Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/358330]Researchers: A/Pr Kenneth Rodgers (Principal investigator) , Prof Michael Davies , Prof Roger Dean
Brief description Australia has one of the world's most rapidly ageing populations. It is estimated that in 30 years time over 30% of the population will be over 65; many will suffer from a debilitating, age-related disease. The diseases of ageing represent one of the major health challenges this century. Despite their increasing incidence, our understanding of the underlying causes is limited. A common feature is the accumulation of damaged proteins in cells and tissues. Damaged proteins are usually broken down by the cells and replaced, but in many age-related diseases this process fails. The most common source of protein damage is attack by oxygen-derived free radicals. These are by-products of our body's need for oxygen and can originate from atmospheric pollutants. Oxygen rusts metal, makes fat go rancid and can cause irreparable damage to proteins and other biological molecules. Free radical damage contributes to the development of many age-related diseases such as atherosclerosis and neurodegenerative diseases such as Alzheimer's disease. The accumulation of damaged proteins can cause cell death. Our knowledge of the mechanisms by which cells remove proteins damaged by oxygen and the reasons for their accumulation is limited. In this project we will use a novel technique we have developed to generate oxidised proteins in ageing cells. We will identify cellular mechanisms required for the efficient removal of damaged proteins and those mechanisms which fail in ageing cells. We will focus on a group of proteins which protect damaged proteins from aggregating and accumulating and we will examine how we can prevent the accumulation of oxidised proteins by stimulating the body s defence mechanisms. Since the population of Australia is ageing, diseases of ageing are going to consume an increasing amount of the national health budget. A better knowledge of these cellular mechanisms will allow us to design effective prevention and treatment strategies which are at present lacking.
Funding Amount $AUD 429,000.00
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 358330
- PURL : https://purl.org/au-research/grants/nhmrc/358330