grant

Mechanisms of mechanotransduction in primary visceral afferents [ 2004 - 2006 ]

Also known as: Gut feelings - the basis of detection of mechanical forces

Research Grant

[Cite as http://purl.org/au-research/grants/nhmrc/298942]

Researchers: Prof Ashley Blackshaw (Principal investigator) ,  A/Pr Stuart Brierley Prof Amanda Page

Brief description Mechanotransduction is the process whereby mechanical stimuli are converted into signals in sensory nerves. This forms the basis of touch, hearing, position sense and many aspects of internal perception. It also constitutes a major component of pain. Our group aims to discover the molecular basis of mechanotransduction in mammals, and in particular how it relates to signaling of events in the digestive system. We and our collaborators have been among the first to explore this question, and have found that three genes are responsible for many aspects of mechanotransduction. Each gene is transcribed to produce a channel or pore in the membrane of sensory nerve fibres which responds to mechanical forces by allowing ions to enter and induce electrical signals. Our early findings in mice with disruption of individual genes indicate that a complex positive and negative interaction of these channels must underlie normal mechanotransduction. However, these channels must represent only a part of the transduction mechanism, with extracellular and intracellular anchors inevitably playing a major role. The identity of such anchoring proteins in mammals is currently emerging, and we are fortunate to have access to mice deficient in specific genes that will provide information about candidates for this role. Through our studies on mechanotransduction in the digestive system in parallel with our collaborators' studies on mechanotransduction in skin we shall not only identify the fundamental mechanisms of mammalian mechanotransduction, but also reveal which components of mechanotransducers are peculiar to the gut. Such peculiarities provide molecular targets for therapy of diseases in which alteration of mechanosensory signaling is itself an aim.

Funding Amount $AUD 253,500.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]