Data

MATLAB code and data used in the code for thesis titled "Developing a Geospatial Bayesian Probabilistic Method for Groundwater Vulnerability Assessment"

University of New South Wales
Taghavi, Nasrin ; Niven, Robert
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.26190/unsworks/30797&rft.title=MATLAB code and data used in the code for thesis titled Developing a Geospatial Bayesian Probabilistic Method for Groundwater Vulnerability Assessment&rft.identifier=https://doi.org/10.26190/unsworks/30797&rft.publisher=UNSW, Sydney&rft.description=Groundwater vulnerability assessment via sparsity-enforcing Bayesian inference: This code includes Joint maximum a-posteriori (JMAP), variational Bayesian approximation (VBA) and SIDNy algorithms for groundwater vulnerability assessment using spatial series data.&rft.creator=Taghavi, Nasrin &rft.creator=Niven, Robert &rft.date=2025&rft_rights= https://creativecommons.org/licenses/by/4.0/&rft_subject=joint maximum a-posteriori (JMAP)&rft_subject=variational Bayesian approximation (VBA)&rft_subject=SIDNy&rft_subject=groundwater vulnerability assessment&rft_subject=sparsity-enforcing Bayesian inference&rft_subject=Probability theory&rft_subject=Statistics&rft_subject=MATHEMATICAL SCIENCES&rft_subject=Groundwater quality processes and contaminated land assessment&rft_subject=Pollution and contamination&rft_subject=ENVIRONMENTAL SCIENCES&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details

Access:

Open view details

Full description

Groundwater vulnerability assessment via sparsity-enforcing Bayesian inference: This code includes Joint maximum a-posteriori (JMAP), variational Bayesian approximation (VBA) and SIDNy algorithms for groundwater vulnerability assessment using spatial series data.

Issued: 2025

Data time period: 2015 to 2023

This dataset is part of a larger collection

Click to explore relationships graph
Identifiers