Data

Macromolecular data of diatoms exposed to Ocean Acidification - Mesocosm Experiments at Davis Station, Antarctica, 2014-2015

Australian Antarctic Data Centre
PETROU, KATHERINA
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.26179/ej5x-2h37&rft.title=Macromolecular data of diatoms exposed to Ocean Acidification - Mesocosm Experiments at Davis Station, Antarctica, 2014-2015&rft.identifier=10.26179/ej5x-2h37&rft.publisher=Australian Antarctic Data Centre&rft.description=Synchrotron based FTIR macromolecule profiles of 5 diatom species from the AAS_4026 ocean acidification project. Data represent the peak areas for wavenumbers related to key macromolecules. For details on methods see Duncan et al. (2021) New Phytologist. Experimental design and mesocosm set up Mesocosm set up and conditions were as described previously (Deppeler et al., 2018; Hancock et al., 2018). Briefly, a near-shore, natural Antarctic microbial community was collected from an ice-free area among broken fast ice approximately 1km offshore from Davis Station, Antarctica (68° 35ʹ S, 77° 58ʹ E) on 19 November 2014. This community was incubated in 6 x 650L polyurethane tanks (mesocosms) across a gradient of fCO2 levels (343, 506, 634, 953, 1140 and 1641 μatm; denoted M1 – M6). These fCO2 levels corresponded to pH values ranging from 8.17 to 7.57. Temperature was maintained at 0.0 °C ± 0.5 °C and the mesocosms were stirred continuously by a central auger (15 r.p.m.) for gentle mixing and covered with an air-tight lid. Irradiance was initially kept low (0.8 ± 0.2 μmol photons m-2s-1), while cell physiology was left to acclimate to increasing fCO2 levels (over 5 days). When target fCO2 levels were reached in all six mesocosms, light was gradually increased (days 5-8) to 89 ± 16 μmol photons m-2s-1 on a 19 h:5 h light:dark cycle, to mimic current natural conditions. To generate the gradient in carbonate chemistry, filtered seawater saturated with CO2 was added to five of the mesocosms. Daily measurements were taken to monitor pH and dissolved inorganic carbon (DIC). For details of fCO2 manipulations, analytical procedures and calculations see Deppeler et al., (2018). Samples for physiological and macromolecular measurements in this study were taken on day 18, at the end of the incubation period (Deppeler et al., 2018). Cell volume Cell volume was determined for selected taxa from M1 and M6 via light microscopy. Cells were imaged on a calibrated microscope (Nikon Eclipse Ci-L, Japan) and length, width and height (24-77 cells per taxa) determined using ImageJ software (Schneider et al., 2012). Biovolume was then calculated according to the cell morphology and corresponding equations described by Hillebrand et al (1999). Macromolecular content by FTIR The macromolecular composition of the selected diatom taxa sampled from all six mesocosms on day 18 was determined using Synchrotron based FTIR microspectroscopy on formalin-fixed (2% v/v final concentration) cells. Measurements were made on hydrated cells and processed according to previous studies (Sackett et al. 2103; 2014; Sheehan et al. 2020). Briefly, fixed cells were loaded directly onto a micro-compression cell with a 0.3 mm thick CaF2 window. Spectral data of individual cells (between 15-49 cells per taxon per mesocosm) were collected in transmission mode, using the Infrared Microspectroscopy Beamline at the Australian Synchrotron, Melbourne, in November 2015. Spectra were acquired over the measurement range 4000− 800 cm−1 with a Vertex 80v FTIR spectrometer (Bruker Optics) in conjunction with an IR microscope (Hyperion 2000, Bruker) fitted with a mercury cadmium telluride detector cooled with liquid nitrogen. Co-added interferograms (n = 64) were collected at a wavenumber resolution of 6 cm−1s. To allow for measurements of individual cells, all measurements were made in transmission mode, using a measuring area aperture size of 5 × 5 µm. Spectral acquisition and instrument control were achieved using Opus 6.5 software (Bruker). Normalised spectra of biologically relevant regions revealed absorbance bands representative of key macromolecules were selected. Specifically, the amide II (~1540 cm-1), Free Amino Acid (~1452 cm-1), Carboxylates (~1375 cm-1), Ester carbonyl from lipids (~1745 cm-1) and Saturated Fatty Acids (~2920 cm-1) bands were selected. Infra-red spectral data were analysed using custom made scripts in R (R Development Core Team 2018). The regions of 3050-2800, 1770-1100 cm-1, which contain the major biological were selected for analysis. Spectral data were smoothed (4 pts either side) and second derivative (3rd order polynomial) transformed using the Savitzky-Golay algorithm from the prospectr package in R (Stevens and Ramirez-Lopez, 2014) and then normalised using the method of Single Normal Variate (SNV). Macromolecular content for individual taxon was estimated based on integrating the area under each assigned peak, providing metabolite content according to the Beer-Lambert Law, which assumes a direct relationship between absorbance and relative analyte concentration (Wagner et al., 2010). Integrated peak areas provide relative changes in macromolecular content between samples. Because of the differences in absorption properties of macromolecules, peak areas can only be used as relative measure within compounds.&rft.creator=PETROU, KATHERINA &rft.date=2021&rft.coverage=northlimit=-65.1282; southlimit=-72.18491; westlimit=69.40625; eastLimit=86.6875; projection=WGS84&rft.coverage=northlimit=-65.1282; southlimit=-72.18491; westlimit=69.40625; eastLimit=86.6875; projection=WGS84&rft_rights=This data set conforms to the CCBY Attribution License (http://creativecommons.org/licenses/by/4.0/). Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=AAS_4026_FTIR when using these data.&rft_subject=biota&rft_subject=oceans&rft_subject=DIATOMS&rft_subject=EARTH SCIENCE&rft_subject=BIOLOGICAL CLASSIFICATION&rft_subject=PROTISTS&rft_subject=CARBON DIOXIDE&rft_subject=OCEANS&rft_subject=OCEAN CHEMISTRY&rft_subject=SYNCHROTRON-BASED FOURIER TRANSFORM INFRARED MICROSPECTROSCOPY&rft_subject=MESOCOSMS&rft_subject=OCEAN ACIDIFICATION&rft_subject=MACROMOLECULES&rft_subject=FTIR SPECTROMETER > Fourier Transform Infrared Spectrometer&rft_subject=LABORATORY&rft_subject=GEOGRAPHIC REGION > POLAR&rft_subject=CONTINENT > ANTARCTICA > DAVIS STATION&rft_subject=OCEAN > SOUTHERN OCEAN > PRYDZ BAY&rft_place=Hobart&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

view details

This data set conforms to the CCBY Attribution License (http://creativecommons.org/licenses/by/4.0/). Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=AAS_4026_FTIR when using these data.

Access:

Open view details

These data are publicly available for download from the provided URL.

Brief description

Synchrotron based FTIR macromolecule profiles of 5 diatom species from the AAS_4026 ocean acidification project. Data represent the peak areas for wavenumbers related to key macromolecules. For details on methods see Duncan et al. (2021) New Phytologist.

Experimental design and mesocosm set up
Mesocosm set up and conditions were as described previously (Deppeler et al., 2018; Hancock et al., 2018). Briefly, a near-shore, natural Antarctic microbial community was collected from an ice-free area among broken fast ice approximately 1km offshore from Davis Station, Antarctica (68° 35ʹ S, 77° 58ʹ E) on 19 November 2014. This community was incubated in 6 x 650L polyurethane tanks (mesocosms) across a gradient of fCO2 levels (343, 506, 634, 953, 1140 and 1641 μatm; denoted M1 – M6). These fCO2 levels corresponded to pH values ranging from 8.17 to 7.57.
Temperature was maintained at 0.0 °C ± 0.5 °C and the mesocosms were stirred continuously by a central auger (15 r.p.m.) for gentle mixing and covered with an air-tight lid. Irradiance was initially kept low (0.8 ± 0.2 μmol photons m-2s-1), while cell physiology was left to acclimate to increasing fCO2 levels (over 5 days). When target fCO2 levels were reached in all six mesocosms, light was gradually increased (days 5-8) to 89 ± 16 μmol photons m-2s-1 on a 19 h:5 h light:dark cycle, to mimic current natural conditions.
To generate the gradient in carbonate chemistry, filtered seawater saturated with CO2 was added to five of the mesocosms. Daily measurements were taken to monitor pH and dissolved inorganic carbon (DIC). For details of fCO2 manipulations, analytical procedures and calculations see Deppeler et al., (2018). Samples for physiological and macromolecular measurements in this study were taken on day 18, at the end of the incubation period (Deppeler et al., 2018).
Cell volume
Cell volume was determined for selected taxa from M1 and M6 via light microscopy. Cells were imaged on a calibrated microscope (Nikon Eclipse Ci-L, Japan) and length, width and height (24-77 cells per taxa) determined using ImageJ software (Schneider et al., 2012). Biovolume was then calculated according to the cell morphology and corresponding equations described by Hillebrand et al (1999).

Macromolecular content by FTIR
The macromolecular composition of the selected diatom taxa sampled from all six mesocosms on day 18 was determined using Synchrotron based FTIR microspectroscopy on formalin-fixed (2% v/v final concentration) cells.

Measurements were made on hydrated cells and processed according to previous studies (Sackett et al. 2103; 2014; Sheehan et al. 2020). Briefly, fixed cells were loaded directly onto a micro-compression cell with a 0.3 mm thick CaF2 window. Spectral data of individual cells (between 15-49 cells per taxon per mesocosm) were collected in transmission mode, using the Infrared Microspectroscopy Beamline at the Australian Synchrotron, Melbourne, in November 2015. Spectra were acquired over the measurement range 4000− 800 cm−1 with a Vertex 80v FTIR spectrometer (Bruker Optics) in conjunction with an IR microscope (Hyperion 2000, Bruker) fitted with a mercury cadmium telluride detector cooled with liquid nitrogen. Co-added interferograms (n = 64) were collected at a wavenumber resolution of 6 cm−1s. To allow for measurements of individual cells, all measurements were made in transmission mode, using a measuring area aperture size of 5 × 5 µm. Spectral acquisition and instrument control were achieved using Opus 6.5 software (Bruker).

Normalised spectra of biologically relevant regions revealed absorbance bands representative of key macromolecules were selected. Specifically, the amide II (~1540 cm-1), Free Amino Acid (~1452 cm-1), Carboxylates (~1375 cm-1), Ester carbonyl from lipids (~1745 cm-1) and Saturated Fatty Acids (~2920 cm-1) bands were selected.

Infra-red spectral data were analysed using custom made scripts in R (R Development Core Team 2018). The regions of 3050-2800, 1770-1100 cm-1, which contain the major biological were selected for analysis. Spectral data were smoothed (4 pts either side) and second derivative (3rd order polynomial) transformed using the Savitzky-Golay algorithm from the prospectr package in R (Stevens and Ramirez-Lopez, 2014) and then normalised using the method of Single Normal Variate (SNV). Macromolecular content for individual taxon was estimated based on integrating the area under each assigned peak, providing metabolite content according to the Beer-Lambert Law, which assumes a direct relationship between absorbance and relative analyte concentration (Wagner et al., 2010). Integrated peak areas provide relative changes in macromolecular content between samples. Because of the differences in absorption properties of macromolecules, peak areas can only be used as relative measure within compounds.

Issued: 2021-08-18

Data time period: 2014-11-20 to 2015-01-16

This dataset is part of a larger collection

Click to explore relationships graph

86.6875,-65.1282 86.6875,-72.18491 69.40625,-72.18491 69.40625,-65.1282 86.6875,-65.1282

78.046875,-68.656555

text: northlimit=-65.1282; southlimit=-72.18491; westlimit=69.40625; eastLimit=86.6875; projection=WGS84

Other Information
Identifiers