Data

Leg 188 Sythesis: Transitions in the Glacial History of the Prydz Bay Region, East Antarctica, from ODP Drilling

Australian Ocean Data Network
Cooper, A.K. ; O'Brien, P.E.
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=https://pid.geoscience.gov.au/dataset/ga/61354&rft.title=Leg 188 Sythesis: Transitions in the Glacial History of the Prydz Bay Region, East Antarctica, from ODP Drilling&rft.identifier=https://pid.geoscience.gov.au/dataset/ga/61354&rft.description=Drilling during Leg 119 (1988) and Leg 188 (2000; Sites 1165-1167) of the Ocean Drilling Program (ODP) provides direct evidence for long- and short-term changes in Cenozoic paleoenvironments in the Prydz Bay region. Cores from across the continental margin reveal that in preglacial times the present shelf was an alluvial plain system with austral conifer woodland in the Late Cretaceous that changed to cooler Nothofagus rainforest scrub by the middle to late Eocene (Site 1166). Earliest recovered evidence of nearby mountain glaciation is seen in late Eocene-age grain textures in fluvial sands. In the late Eocene to early Oligocene, Prydz Bay permanently shifted from being a fluvio-deltaic complex to an exclusively marine continental shelf environment. This transition is marked by a marine flooding surface later covered by overcompacted glacial sediments that denote the first advance of the ice sheet onto the shelf. Cores do not exist for the early Oligocene to early Miocene, and seismic data are used to infer the transition from a shallow to normal depth prograding continental shelf with submarine canyons on the slope and channel/levees on the rise.Maintenance and Update Frequency: unknownStatement: Unknown&rft.creator=Cooper, A.K. &rft.creator=O'Brien, P.E. &rft.date=2004&rft.coverage=westlimit=69; southlimit=-70.0; eastlimit=81; northlimit=-65.0&rft.coverage=westlimit=69; southlimit=-70.0; eastlimit=81; northlimit=-65.0&rft_rights=&rft_rights=Creative Commons Attribution 4.0 International Licence&rft_rights=CC-BY&rft_rights=4.0&rft_rights=http://creativecommons.org/licenses/&rft_rights=WWW:LINK-1.0-http--link&rft_rights=Australian Government Security ClassificationSystem&rft_rights=https://www.protectivesecurity.gov.au/Pages/default.aspx&rft_rights=WWW:LINK-1.0-http--link&rft_rights=Creative Commons Attribution 4.0 International Licence http://creativecommons.org/licenses/by/4.0&rft_subject=geoscientificInformation&rft_subject=External Publication&rft_subject=Scientific Journal Paper&rft_subject=Antarctic data&rft_subject=climate&rft_subject=palaeoclimatology&rft_subject=continental margins&rft_subject=marine&rft_subject=AQ&rft_subject=EARTH SCIENCES&rft_subject=Published_External&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 4.0 International Licence
http://creativecommons.org/licenses/by/4.0

Creative Commons Attribution 4.0 International Licence

CC-BY

4.0

http://creativecommons.org/licenses/

WWW:LINK-1.0-http--link

Australian Government Security ClassificationSystem

https://www.protectivesecurity.gov.au/Pages/default.aspx

WWW:LINK-1.0-http--link

Access:

Open

Contact Information

clientservices@ga.gov.au

Brief description

Drilling during Leg 119 (1988) and Leg 188 (2000; Sites 1165-1167) of the Ocean Drilling Program (ODP) provides direct evidence for long- and short-term changes in Cenozoic paleoenvironments in the Prydz Bay region. Cores from across the continental margin reveal that in preglacial times the present shelf was an alluvial plain system with austral conifer woodland in the Late Cretaceous that changed to cooler Nothofagus rainforest scrub by the middle to late Eocene (Site 1166). Earliest recovered evidence of nearby mountain glaciation is seen in late Eocene-age grain textures in fluvial sands. In the late Eocene to early Oligocene, Prydz Bay permanently shifted from being a fluvio-deltaic complex to an exclusively marine continental shelf environment. This transition is marked by a marine flooding surface later covered by overcompacted glacial sediments that denote the first advance of the ice sheet onto the shelf. Cores do not exist for the early Oligocene to early Miocene, and seismic data are used to infer the transition from a shallow to normal depth prograding continental shelf with submarine canyons on the slope and channel/levees on the rise.

Lineage

Maintenance and Update Frequency: unknown
Statement: Unknown

Issued: 2004

This dataset is part of a larger collection

Click to explore relationships graph

81,-65 81,-70 69,-70 69,-65 81,-65

75,-67.5

text: westlimit=69; southlimit=-70.0; eastlimit=81; northlimit=-65.0

Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Other Information
View the online article in Scientific Results, Vol. 188, pp.1-44 (Related Product)

uri : http://www-odp.tamu.edu/publications/188_SR/188TOC.HTM

Identifiers