Data

Investment in chemical signalling glands facilitates the evolution of sociality in lizards

Macquarie University
Martin Whiting (Aggregated by) Simon Baeckens (Aggregated by)
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.5061/dryad.3xsj3txfg&rft.title=Investment in chemical signalling glands facilitates the evolution of sociality in lizards&rft.identifier=https://doi.org/10.5061/dryad.3xsj3txfg&rft.publisher=Macquarie University&rft.description=The evolution of sociality and traits that correlate with, or predict, sociality, have been the focus of considerable recent study. In order to reduce the social conflict that ultimately comes with group living, and foster social tolerance, individuals need reliable information about group members and potential rivals. Chemical signals are one such source of information and are widely used in many animal taxa, including lizards. Here, we take a phylogenetic comparative approach to test the hypothesis that social grouping correlates with investment in chemical signalling. We used the presence of epidermal glands as a proxy of chemical investment and considered social grouping as the occurrence of social groups containing both adults and juveniles. Based on a dataset of 911 lizard species, our models strongly supported correlated evolution between social grouping and chemical signalling glands. The rate of transition towards social grouping from a background of ‘epidermal glands present’ was an order of a magnitude higher than from a background of ‘no epidermal glands’. Our results highlight the potential importance of chemical signalling during the evolution of sociality and the need for more focused studies on the role of chemical communication in facilitating information transfer about individual and group identity, and ameliorating social conflict. Usage Notes See README file for more instructions&rft.creator=Martin Whiting&rft.creator=Simon Baeckens&rft.date=2023&rft_rights=CC0&rft_subject=None Given&rft_subject=Other education not elsewhere classified&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

view details

CC0

Access:

Other

Full description

The evolution of sociality and traits that correlate with, or predict, sociality, have been the focus of considerable recent study. In order to reduce the social conflict that ultimately comes with group living, and foster social tolerance, individuals need reliable information about group members and potential rivals. Chemical signals are one such source of information and are widely used in many animal taxa, including lizards. Here, we take a phylogenetic comparative approach to test the hypothesis that social grouping correlates with investment in chemical signalling. We used the presence of epidermal glands as a proxy of chemical investment and considered social grouping as the occurrence of social groups containing both adults and juveniles. Based on a dataset of 911 lizard species, our models strongly supported correlated evolution between social grouping and chemical signalling glands. The rate of transition towards social grouping from a background of ‘epidermal glands present’ was an order of a magnitude higher than from a background of ‘no epidermal glands’. Our results highlight the potential importance of chemical signalling during the evolution of sociality and the need for more focused studies on the role of chemical communication in facilitating information transfer about individual and group identity, and ameliorating social conflict.

Usage Notes

See README file for more instructions

Issued: 2021-02-22

Created: 2022-06-10

This dataset is part of a larger collection

Click to explore relationships graph
Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Identifiers