Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/376022]Researchers: A/Pr Carsten Schmitz-Peiffer (Principal investigator) , Prof Trevor Biden
Brief description The rise in blood insulin levels after a meal normally reduces blood sugar levels by increasing glucose uptake and storage in certain tissues, especially muscle. Type 2 diabetes is characterized in part by a failure of the pancreas to produce adequate insulin in response to increases in blood sugar. This loss of insulin secretion has been strongly linked to increases in the availability of fat, although the reasons for this are not clear. We have recently found that mice lacking a specific enzyme (protein kinase C epsilon) are much less susceptible to the problems in dealing with blood sugar that are caused by a high fat diet. We showed that this is due partly to improved insulin secretion, and also to a slower breakdown of insulin by the liver, which increases its availability to target tissues. The aim of this project is to investigate the mechanisms occurring in the liver and in the pancreas by which this enzyme contributes to improved insulin action. Firstly, we will examine insulin uptake in liver cells, to investigate how the enzyme controls this process. Secondly, we will determine the mechanism through which the activation of the enzyme, upon increased fat supply to pancreatic beta-cells, reduces insulin secretion in response to glucose. Finally, will assess the relative importance of these two actions of the enzyme in improving the control of blood sugar levels. This work will lead to a better understanding of the mechanisms by which fat oversupply, and hence obesity, can play a role in the development of Type 2 diabetes, so that they can be targeted both for the development of new and more effective treatments for the disorder and for prevention of its onset.
Funding Amount $AUD 627,148.48
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 376022
- PURL : https://purl.org/au-research/grants/nhmrc/376022