Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/250301]Researchers: Prof Nicola (Nick) Fazzalari (Principal investigator) , Trevor Hearn
Brief description The cause of back pain due to osteoarthritis, osteoporotic vertebral crush fracture, and ageing is poorly understood. Vertebral deformity, intervertebral disc disorganisation, and change to vertebral bone structure are features associated with degeneration of the spine and with back pain. Degenerative disc disease is one of the major causes of back symptoms and is believed to be associated with degeneration of the spine. Spinal degeneration includes disc degeneration, facet joint osteoarthritis, compromised vertebral body bone quality, muscle and ligament alterations. It is assumed that these changes result in increased or abnormal spine motion and modified load distribution across the spinal joint. It has been found that with age, there is increased disorganisation of the intervertebral disc and decreased quality of vertebral cancellous bone. However, bones with the same density within the range of normal subjects, can show selective loss of bone structure and reduced load-bearing capacities of these vertebrae. An important concept here is that even for a given bone mass, fracture risk increases with age, supporting the view that there is a component of bone fragility that is independent of mass. Increased bone fragility may be associated with compromised cancellous bone structure. While the relationship between disc degeneration and changes in vertebral bone is commonly invoked, the mechanisms of this relationship have largely been overlooked, with age changes given more attention. However, it may be that intervertebral disc disorganisation modulates age-related bone changes within the spine. Disc degeneration may influence trabecular bone responses before changes with age put the patient at risk of vertebral crush fracture. We propose that the mature disc cannot effectively regenerate after damage, and thus responses to disc damage will be more readily observed in vertebral bone architecture than in the disc.
Funding Amount $AUD 423,625.00
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 250301
- PURL : https://purl.org/au-research/grants/nhmrc/250301