Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/315525]Researchers: Dr Bruce Wines (Principal investigator) , A/Pr Mark Wright , Prof Denise Jackson , Prof Mark Hogarth
Brief description Our immune system exists to seek and destroy infections caused by bacteria and viruses (pathogens) that would grow in us. B cells in the immune system make antibody tags which attach to pathogens marking them for elimination. A special type of antibody is IgA. IgA occurs in two forms, the first is found at mucosal sites, these are membranous passages in the body, such as the lung, the gut and the genital tract. These communicate with the outside and are the major route of pathogen entry into the body. Here IgA forms a rather passive, but pathogen specific, sticky barrier to prevent microbial pathogens attaching to these large surfaces. In an everyday analogy this IgA behaves somewhat like fly-paper. This subdued response is appropriate as we are constantly exposed to micro-organisms living in our gut, or breathed into our lungs, and our immune system would make us ill if it aggressively attacked our innocuous microbial neighbours. The second type of IgA is found in the blood where it attaches to pathogens that have breached the body's barriers. These IgA tags are actively sought by white blood cells whose function is to protect the body from infection by recognising and engulfing the tagged pathogens and destroying them with killer molecules, including bleach. The IgA-Fc receptor is the sensor on the surface of white blood cells which seeks the IgA tags as they attach to pathogens. In order to survive in this hostile environment some of our pathogens, such as Staphylococcus, have their own strategies to make themselves invisible to the immune system. These strategies include cutting up the IgA tags or blocking the sensors for IgA. In this project we will study how IgA tags turn on white blood cells to destroy pathogens. We will also be looking at two Staphylococcal proteins which block up the sensor for IgA tags. Finally we are endeavouring to understand how it is the mucosal type IgA does not activate the white cells nearly as much as the IgA from the blood.
Funding Amount $AUD 535,500.00
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 315525
- PURL : https://purl.org/au-research/grants/nhmrc/315525