Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/458751]Researchers: Dr Archa Fox (Principal investigator)
Brief description Human DNA contains approximately 30000 genes; only twice as many as worms and flies, ten times as many as bacteria, and fewer than rice. Humans, however have considerably more complexity than these lower organisms. What are the factors responsible for the additional complexity? In the simplest scenario, one gene is transcribed to produce one message (mRNA), which is the blueprint for producing one protein. We now know that there are numerous mechanisms that potentially allow many different proteins to be made from one gene. Also, it is the decisions about which gene will be made ( expressed ) into protein where and when in development, that is critical for our complexity. The control of gene expression is thus fundamental to all cellular processes and many diseases such as cancer and metabolic disorders are associated with some aspect of aberrant gene expression. The production of mRNA from DNA occurs in the human cell nucleus. The nucleus is not simply a bag of DNA, in fact, many important nuclear factors are organised into sub-nuclear bodies . Recently we discovered a novel sub-nuclear body, the paraspeckle and have been identifying its components and their function. Paraspeckles are involved in a previously undiscovered mechanism of the control of gene expression. Here, certain mRNA molecules are trapped in the nucleus until a signal is received from elsewhere in the cell, which causes the mRNA to be released and protein to be made. This Rapid Release Nuclear Retention mechanism effectively allows the quick production of specific proteins to be made on demand. In this project we propose to use cutting edge molecular and cell biology techniques to identify the special mRNA molecules that are trapped in paraspeckles in cancer cells. This will increase our understanding about the molecular details of this process, ultimately leading to potential uses in gene therapy, and should result in the discovery of important targets for cancer treatment.
Funding Amount $AUD 267,173.37
Funding Scheme NHMRC Project Grants
Notes New Investigator Grant
- nhmrc : 458751
- PURL : https://purl.org/au-research/grants/nhmrc/458751