grant

Genomic imprinting in the mammalian germline [ 2005 - 2007 ]

Also known as: Imprinting in germ cells

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/350216]

Researchers: Dr Jeffrey Mann (Principal investigator)

Brief description This is a study of the biological system of epigenetics. Every cell in our body has the same genetics, or library of information contained in the form of DNA sequence. Epigenetics is the system that controls how this DNA is used in a particular situation, or what books are opened and read. During embryonic development, cells know what they want to become, e.g., a muscle cell, and, once they take on an identity, remember that they are when they duplicate themselves during growth. Epigenetics does not achieve this through changing genetics - the library always stays intact. Rather, it acts by using proteins or chemicals to make DNA functional in one way, or another. Genomic imprinting is a special type of epigenetics. While an embryo has received identical genetic information from each of its parents, the epigenetic information received from each parent was not entirely the same. Some genes which behave differently according to what parent they came from. For example, a gene that makes a growth factor protein is active only if received from the father. If received from the mother, it is inactive, and makes no protein. Genes behaving in this way are known as imprinted genes. We are trying to discover what epigenetic mechanisms are behind this behaviour of imprinted genes. One way we are approaching this problem is to study germ cells - the cells giving rise to eggs and sperm. These cells are unusual in that their imprinted genes behave in the same way regardless of whether they were received from the mother or father, i.e., like any other gene. If we can understand why this is the case, we will be better able to understand why imprinted genes behave the way they do in the rest of the cells of the body. Broadly, the mechanisms we uncover should further our understanding of germ cell development, gene expression, and disease. Perturbations in the epigenetic profile are likely causes of human disease, including cancer.

Funding Amount $AUD 583,500.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]