grant

GENERATION OF VASCULARISED, BIOENGINEERED SOFT TISSUES [ 2001 - 2003 ]

Also known as: GENERATING NEW TISSUES WITH THEIR OWN BLOOD SUPPLY FOR INJURY REPAIR

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/145782]

Researchers: E/Pr Wayne Morrison (Principal investigator) ,  Aurora Messina Dr Kenneth Knight Prof Anthony Penington

Brief description One of the most exciting areas in reconstructive surgery today is the tissue engineering of body parts, the process by which blood vessels are implanted into skin, muscle, bone, cartilage or even synthetic materials, to build composite living structures. Once a circulation becomes established, the engineered part can be transferred by joining the implanted blood vessels to corresponding ones at the recipient site. We have discovered that new tissue will grow out of a surgically created blood vessel loop placed in a cylindrical plastic chamber filled with a scaffold made of naturally occurring structural molecules. In Part 1 of this project, it is planned to optimise the rate of new vascularised tissue growth through the addition to the growth chamber of various biodegradable scaffolds. In Part 2, we aim to produce fat by 3 possible methods using: (a) cells from the rat scrotum, (b) skeletal muscle separated from its blood supply for 24 hours, or (c) bone marrow-derived stem cells, as well as bone from stem cells of the same source. In Part 3, vascularised bone, fat and connective tissue, as produced in Part 2, will be microsurgically transferred to another site in the body to study the short-term (4 weeks) and long-term (12 weeks) survival and changes (if any) in these tissues. These unique methods are currently being patented. This technology introduces the possibility of producing tailor-made tissues of specific composition to suit the repair of a particular tissue type, for example, (1) myocutaneous flaps to replace tissue loss following traumatic injury, (2) bone for nose, digit or joint repair, and (3) fat to provide a bulky flap as required in contour defects of the face and neck. The development of new growth chambers of appropriate body shapes (eg. ears, noses, etc) has significant commercial implications.

Funding Amount $AUD 445,045.90

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]