Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/384115]Researchers: Prof Marcello Rosa (Principal investigator)
Brief description In the areas of the brain where visual information is processed, cells respond to the presentation of visual stimuli by changing their pattern of electrical activity. At the first level of analysis, the primary visual cortex (V1), individual cells become active only if line segments or borders of a particular orientation are present in their field of detection, which encompasses a small part of the visual scene. Cells in other visual cortical areas (the extrastriate cortex) perform more complex detection tasks in comparison with those in V1, which demand integration of information coming from much larger portions of the visual scene. One example of these more complex properties is the phenomenon of long-range contour integration, where our visual system groups individual line segments having similar orientations, so that they are perceived as part of the same contour. This property is reflected in the electrical responses of cells in the dorsomedial visual area (DM). How are properties such as orientation specificity and long-range contour integration created? To begin addressing this question, we will investigate correlations between the physiological properties of identified cells, the spatial distribution of their information collecting regions (dendrites), and the anatomical pathways by which they receive information from other parts of the brain. This is a basic science study aimed at determining the extent to which the anatomical structure of the brain helps define the function of individual cells and brain areas. Its primary benefit will be to increase our understanding of the mechanisms underlying all sensory processing in the brain. The knowledge obtained may also lead to developments in areas of applied research including medicine and cognitive science (for example, understanding how the brain learns to interpret visual information in early life, and how visual processing degrades with ageing).
Funding Amount $AUD 405,694.68
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 384115
- PURL : https://purl.org/au-research/grants/nhmrc/384115