grant

Functional characterisation of regulators of human globin gene switching [ 2001 - 2003 ]

Also known as: Detailed dissection of the effector proteins that regulate haemoglobin switching

Research Grant

[Cite as http://purl.org/au-research/grants/nhmrc/143701]

Researchers: Prof Andrew Perkins (Principal investigator)

Brief description Red blood cells produce haemoglobin, a tetramer of two alpha globin chains and two beta-globin chains. Haemoglobin reversibly interacts with oxygen in such a way that it efficiently shuttles oxygen between the lungs and the rest of the body. Integrity of the hemoglobin molecule, and red cells which carry it, is essential for life of all organisms with blood. The alpha-globin and beta-globin chains that make up haemoglobin are prodcued by red cell precursors in the bone marrow according to the genetic blueprint (genes) that are inherited. Genetic disorders resulting from defects in the beta-globin gene are the most common inherited disorders of man. Children who fail to make beta-globin have a disease known as beta-thalassaemia. They are transfusion dependent from ~ 6 months of age and need intensive chelation therapy (infusions) to avoid the serious consequnces of iron overload. The average life expectancy in Western cultures is ~ 30 years. There is no cure. In third world countries where a reliable blood supply is unavailable, death occurs earlier. Patients are aften infected with blood born viruses such as hepatitis B, hepatitis C and the AIDS virus, HIV. Sickle cell anaemia is also a very common disease. It is due to a single DNA base mutation at in the beta-globin gene that results in production of normal amounts of a defective beta-globin molecule (HbS). In low oxygen, HbS molecules polymerize in red cells and irreversibly damage them. These red cells get trapped in small blood capillaries throughout the circulation causing small infarcts which results in severe pain and organ damage. The life expectancy is <2 years in the thrid world and ~20-30 years in the west. The irony of these two diseases is that there is a perfectly normal fetal globin gene that has been silenced during fetal life. This grant aims to understand the mechanism of the switch from fetal to adult globin gene usage so it can be reversed in adults with b-thalassemia and sickle cell disease

Funding Amount $AUD 232,131.72

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]