Data

Data from: A distinct functional site in omega-neurotoxins: Novel antagonists of nicotinic acetylcholine receptors from snake venom

RMIT University, Australia
Professor David J Adams (Associated with, Aggregated by)
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=https://figshare.com/articles/A_Distinct_Functional_Site_in_Neurotoxins_Novel_Antagonists_of_Nicotinic_Acetylcholine_Receptors_from_Snake_Venom/2097034&rft.title=Data from: A distinct functional site in omega-neurotoxins: Novel antagonists of nicotinic acetylcholine receptors from snake venom&rft.identifier=a95f1698e54193def038aeee4a407237&rft.publisher=RMIT University, Australia&rft.description=Attached file provides supplementary data for linked article. Snake venom α-neurotoxins from the three-finger toxin (3FTx) family are competitive antagonists with nanomolar affinity and high selectivity for nicotinic acetylcholine receptors (nAChR). Here, we report the characterization of a new group of competitive nAChR antagonists: Ω-neurotoxins. Although they belong to the 3FTx family, the characteristic functional residues of α-neurotoxins are not conserved. We evaluated the subtype specificity and structure–function relationships of Oh9-1, an Ω-neurotoxin from Ophiophagus hannah venom. Recombinant Oh9-1 showed reversible postsynaptic neurotoxicity in the micromolar range. Experiments with different nAChR subtypes expressed in Xenopus oocytes indicated Oh9-1 is selective for rat muscle type α1β1εδ (adult) and α1β1γδ (fetal) and rat neuronal α3β2 subtypes. However, Oh9-1 showed low or no affinity for other human and rat neuronal subtypes. Twelve individual alanine-scan mutants encompassing all three loops of Oh9-1 were evaluated for binding to α1β1εδ and α3β2 subtypes. Oh9-1’s loop-II residues (M25, F27) were the most critical for interactions and formed the common binding core. Mutations at T23 and F26 caused a significant loss in activity at α1β1εδ receptors but had no effect on the interaction with the α3β2 subtype. Similarly, mutations at loop-II (H7, K22, H30) and -III (K45) of Oh9-1 had a distinctly different impact on its activity with these subtypes. Thus, Oh9-1 interacts with these nAChRs via distinct residues. Unlike α-neurotoxins, the tip of loop-II is not involved. We reveal a novel mode of interaction, where both sides of the β-strand of Oh9-1’s loop-II interact with α1β1εδ, but only one side interacts with α3β2. Phylogenetic analysis revealed functional organization of the Ω-neurotoxins independent of α-neurotoxins. Thus, Ω-neurotoxin: Oh9-1 may be a new, structurally distinct class of 3FTxs that, like α-neurotoxins, antagonize nAChRs. However, Oh9-1 binds to the ACh binding pocket via a different set of functional residues.&rft.creator=Professor David J Adams&rft.date=2018&rft.relation=http://dx.doi.org/10.1021/acschembio.5b00492&rft_rights=All rights reserved&rft_rights=CC BY-NC: Attribution-Noncommercial 3.0 AU http://creativecommons.org/licenses/by-nc/3.0/au&rft_subject=Nonneuronal cholinergic system&rft_subject=Black Mamba venom&rft_subject=Ophiophagus Hannah &rft_subject=3-Finger Toxins&rft_subject=Directed mutagenesis&rft_subject=Biological activity&rft_subject=Maximum likelihood&rft_subject=Alpha neurotoxins&rft_subject=Purification &rft_subject=Chemical Sciences not elsewhere classified&rft_subject=CHEMICAL SCIENCES&rft_subject=OTHER CHEMICAL SCIENCES&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Other view details
Unknown

CC BY-NC: Attribution-Noncommercial 3.0 AU
http://creativecommons.org/licenses/by-nc/3.0/au

All rights reserved

Access:

Other view details

Data available in link

Contact Information


Figshare

Full description

Attached file provides supplementary data for linked article. Snake venom α-neurotoxins from the three-finger toxin (3FTx) family are competitive antagonists with nanomolar affinity and high selectivity for nicotinic acetylcholine receptors (nAChR). Here, we report the characterization of a new group of competitive nAChR antagonists: Ω-neurotoxins. Although they belong to the 3FTx family, the characteristic functional residues of α-neurotoxins are not conserved. We evaluated the subtype specificity and structure–function relationships of Oh9-1, an Ω-neurotoxin from Ophiophagus hannah venom. Recombinant Oh9-1 showed reversible postsynaptic neurotoxicity in the micromolar range. Experiments with different nAChR subtypes expressed in Xenopus oocytes indicated Oh9-1 is selective for rat muscle type α1β1εδ (adult) and α1β1γδ (fetal) and rat neuronal α3β2 subtypes. However, Oh9-1 showed low or no affinity for other human and rat neuronal subtypes. Twelve individual alanine-scan mutants encompassing all three loops of Oh9-1 were evaluated for binding to α1β1εδ and α3β2 subtypes. Oh9-1’s loop-II residues (M25, F27) were the most critical for interactions and formed the common binding core. Mutations at T23 and F26 caused a significant loss in activity at α1β1εδ receptors but had no effect on the interaction with the α3β2 subtype. Similarly, mutations at loop-II (H7, K22, H30) and -III (K45) of Oh9-1 had a distinctly different impact on its activity with these subtypes. Thus, Oh9-1 interacts with these nAChRs via distinct residues. Unlike α-neurotoxins, the tip of loop-II is not involved. We reveal a novel mode of interaction, where both sides of the β-strand of Oh9-1’s loop-II interact with α1β1εδ, but only one side interacts with α3β2. Phylogenetic analysis revealed functional organization of the Ω-neurotoxins independent of α-neurotoxins. Thus, Ω-neurotoxin: Oh9-1 may be a new, structurally distinct class of 3FTxs that, like α-neurotoxins, antagonize nAChRs. However, Oh9-1 binds to the ACh binding pocket via a different set of functional residues.

This dataset is part of a larger collection

Identifiers
  • Local : a95f1698e54193def038aeee4a407237