Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/217303]Researchers: Janine Clarey (Principal investigator) , E/Pr Graeme Clark , Prof Antonio Paolini
Brief description Little is known about how speech is processed and transformed by the central auditory pathway, and how the critical temporal and spectral features that identify a speech sound segment (a phoneme) are extracted. To date, most studies have approached this issue by using synthetic speech and examined the responses of the peripheral auditory nerve only. The aim of this study is to examine how important features of naturally-spoken speech are encoded by the cochlear nucleus (CN) - the first station in the auditory pathway located in the brainstem. The CN is a complex of different cell types that have the capacity to transmit, transform, and encode complex acoustic information in different ways. The proposed experiments involve recording the bioelectrical signal from single CN cells in anaesthetised rats while presenting naturally-spoken syllables, both in quiet and in the presence of noise. It is important to examine what happens to the neural responses in the latter condition, because all animals must cope with the problem of extracting important signals from background noise. While noise clearly interferes with the perception of another sound, the auditory system is in fact quite good at extracting signals in the presence of noise. This is well demonstrated by our ability to understand speech in the presence of quite high noise levels. This ability is severely degraded in the hearing impaired. Thus, one of the aims of this study is to examine the mechanisms and limits of the CN's ability to encode speech in a noisy background. A greater understanding of the mechanisms the nervous system uses to extract critical features of speech will not only build on our knowledge of auditory brainstem processes, but may also provide clues to improving processing strategies for cochlear implants.
Funding Amount $AUD 225,330.00
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 217303
- PURL : https://purl.org/au-research/grants/nhmrc/217303