Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/457310]Researchers: Prof Des Richardson (Principal investigator) , Dr David Lovejoy , Prof Paul Bernhardt
Brief description Anthracyclines are highly effective anti-cancer drugs, but their use is limited by toxic effects on the heart. This is thought to be due to these drugs directly binding iron (Fe). Indeed, we showed that anthracyclines induced marked changes in the way heart cells utilise Fe (DR1-3, 38; Mol. Pharmacol. 2002, 2003, 2004, 2005). We were the first to show that anthracyclines prevent Fe release from the criticial Fe storage protein ferritin. This prevents the use of Fe for vital processes eg. DNA and haem synthesis. Hence, this effect probably contributes to the cytotoxic activity of anthracyclines on the heart. We showed that novel drugs developed in my lab that bind Fe called chelators show high activity in animals (DR4) and prevent anthracycline-mediated Fe accumulation in ferritin. Importantly, Fe chelators have been shown to inhibit anthracycline-mediated cardiotoxicity. Indeed, the clinically used cardioprotective agent, ICRF-187, is actually an Fe chelator (5, DR6). However, ICRF-187 is not totally successful in terms of its cardioprotective effects and can cause myelosuppression (5, DR6). While the clinically used chelator, desferrioxamine (DFO), can prevent anthracycline-mediated cardiotoxicity, its poor membrane permeability limits its effectiveness. Our chelators are highly permeable and overcome the disadvantages of DFO (DR4). Thus, they are vital to examine for preventing anthracycline-mediated cardiotoxicity. In this proposal we will examine the changes in Fe metabolism induced by anthracyclines and test the hypothesis that novel Fe chelators may prevent the cardiotoxicity of these agents. We also aim to be the first to assess if preparation of anthracyclines which cannot bind iron prevents their cardiotoxicity. This will be done by preparing metal complexes of these drugs which prevent Fe-binding eg. anthracycline-zinc complexes. These studies are important for the development of less cardiotoxic forms of these very useful anti-tumour agents.
Funding Amount $AUD 618,401.32
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 457310
- PURL : https://purl.org/au-research/grants/nhmrc/457310