Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/209077]Researchers: Dr Christopher Wraight (Principal investigator) , Prof George Werther , Stephanie Edmondson
Brief description Our skin protects us from damage, dehydration, infection and harmful UV radiation. At the same time, we expect it to remain healthy, smooth and looking good. How the skin, and more particularly its upper layer, the epidermis, adapts to all these requirements is a complex problem yet to be fully understood. This question forms the basis of our project proposal. The epidermis is a continuously self-renewing tissue, in which cells have an average life of 30 days before they are invisibly shed to the outside. In normal states and when responding to injury or disease, this cell turnover speed can be finely tuned, for example accelerated in the case of a healing wound. In contrast, if damaged by the sun, epidermal cells undergo a form of cell suicide (apoptosis) to prevent tumours forming from cells with damaged genes. This changing turnover speed is controlled by a series of growth factors, or cytokines. Insulin-like growth factor-I (IGF-I) is a unique cytokine that can control both cell turnover rate, and cell death. We aim to uncover the complex biochemical interactions that allow the epidermal IGF-I system to achieve this seemingly contradictory task. This study is important because when the epidermis loses the ability to finely tune its turnover speed, ulcers, sun damage, the common skin disorder psoriasis, or worse still, skin tumours, arise. This project explores ways of manipulating the IGF-I system to prevent this, and builds on some technology developed by the research group that has already proven effective in the control of psoriasis. The project also promises to discover undiscovered growth regulators that could be used in new gene therapies for skin overgrowth diseases.
Funding Amount $AUD 451,980.00
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 209077
- PURL : https://purl.org/au-research/grants/nhmrc/209077