Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/209045]Researchers: E/Pr Wayne Morrison (Principal investigator) , Aurora Messina , Dr Kenneth Knight , Prof Anthony Penington
Brief description Tissue engineering is an exciting new area of medical research. We have developed a unique animal model of tissue engineering where new tissue spontaneously sprouts from the surface of a vascular loop enclosed inside a plastic chamber. The tissue thus created has its own blood supply. By adding cultured cells or altering the environment of the chamber we have been able to grow new specific tissues such as fat and muscle. This technology potentially allows the generation of spare body parts to replace lost or worn out organs and tissues. We have recently reproduced this model in the mouse to be able to screen a range of mouse and human stem cells. These cells have the ability to change (i.e. differentiate) into many different types of cell depending on how they are stimulated. In Part 1 of this project we will determine in the mouse chamber the growth characteristics and survival rates of these stem cells. A chamber encapsulating a flowing blood vessel will be implanted subcutaneously in each groin. In one chamber we will inject fluorescently labelled stem cells in a growth medium and in the other growth medium alone. Tissue will be analysed at 1, 2 and 4 weeks. In Part 2 we will inject a variety of Rosa26 labelled mouse stem cells obtained from several different tissues. Through the aid of naturally occurring growth and differentiation factors they will differentiate into one of several different tissues including fat, cartilage, bone, neural tissue, blood vessels, liver, etc, which will be identified by histology and cell culture. In one experiment we will genetically alter cells injected into the chamber so that they produce only skeletal muscle. In Part 3 we will grow new human tissues by injecting human stem cells into the same tissue engineering chambers in mice which will tolerate cells from other mammals (these are known as SCID mice). Success in novel method would be the precursor for the production of new human tissues to repair specific defects.
Funding Amount $AUD 549,480.00
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 209045
- PURL : https://purl.org/au-research/grants/nhmrc/209045