grant

ENCODING ACTIVE TACTILE SENSING IN THE BRAIN [ 2005 - 2007 ]

Also known as: HOW THE BRAIN CODES FOR FINE TOUCH PERCEPTION

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/334052]

Researchers: Prof Ramesh Rajan (Principal investigator) ,  Prof Antony Goodwin

Brief description We are able to identify and discriminate objects in the world because of exquisitely detailed and rapid processing of sensory information by neurons in the cortex of the brain. In this project we will examine these operations in neurons in the cortex that receive input from the large face whiskers of the rat. These whiskers are used for fine-grain discrimination and for gauging distance. They are deflected by being actively moved, under muscle control, over objects (active touch) or by being passively deflected by objects. Deflection results in inputs to the brain that are processed to form the neural basis for very finely detailed perceptual behaviour. In rats, with impoverished visual and auditory senses, the whiskers are the major sensory system for interacting with the world, and are used in navigating the environment and in finding and distinguishing foods. Thus they contribute strongly to the remarkable success of this species. This elegant sensory system has a number of advantages that make it a very good model for the study of brain mechanisms responsible for active fine-grain sensory function. We plan to take advantage of the unique features of this system to define the information processing that occurs in the cortex in this elegantly complex system. This will address an issue relevant to all sensory systems - namely the neural basis of complex fine grain perceptual behaviour. Understanding the mechanisms underlying active tactile perception also has relevance to clinical conditions involving deficits in active touch e.g., in diabetic polyneuropathy (which eventually affects ~50% of diabetics), in leprosy (in which an early sign is damage to active touch). Knowledge of the core brain processes in active touch gained in this study could eventually underpin the ameliorative technologies for such deficits.

Funding Amount $AUD 251,000.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]