Research Grant
[Cite as https://purl.org/au-research/grants/arc/DP200101328]Researchers: Ivor Tsang (Chief Investigator) , Yulei Sui (Chief Investigator) , A/Prof Yang Liu (Partner Investigator) , Klaus-Robert Mueller (Partner Investigator)
Brief description Adversarial Learning of Hybrid Representation. This project aims to design and implement a foundational deep representation learning framework for early detection, classification and defense of emerging malware by capturing their underlying behaviours via structured and unstructured heterogeneous information through hybrid representation learning, behaviour graph mining, and symbolic adversarial learning to discover and defend unknown malware families, thereby significantly boosting the accuracy and robustness of existing classifiers and detectors. The resulting representation learning framework will enhance the national security to protect user privacy, reducing the multi-million-dollar loss caused by fraudulent transactions, and defending against cyber attacks.
Funding Amount $390,000
Funding Scheme Discovery Projects
- ARC : DP200101328
- PURL : https://purl.org/au-research/grants/arc/DP200101328