Data

Diatom, and associated data from grid samples collected in Brown Bay

Australian Ocean Data Network
Riddle, M.J., Stark, J.S. and Cunningham, L.K. ; RIDDLE, MARTIN J. ; STARK, JONATHAN SEAN ; CUNNINGHAM, LAURA KAY
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=http://data.aad.gov.au/metadata/records/Diatoms_bbg&rft.title=Diatom, and associated data from grid samples collected in Brown Bay&rft.identifier=http://data.aad.gov.au/metadata/records/Diatoms_bbg&rft.publisher=Australian Antarctic Data Centre&rft.description=Sediment samples were collected from nine points along 3 parallel transects within the contaminated Brown Bay. The diatom spreadsheet (diatom_data) contains both initial diatom counts and the relative abundance of benthic species. The abbreviation used to identify species are explained in the separate file called sp_list. Metal, Total Purgeable Hydrocarbons (TPH), and grain-size data are all presented as separate files. This work was completed as part of ASAC project 1130 (ASAC_1130) and project 2201 (ASAC_2201). Public summary from project 1130: Algal mats grow on sea floor in most shallow marine environments. They are thought to contribute more than half of the total primary production in many of these areas, making them a critical food source for invertebrates and some fish. We will establish how important they are in Antarctic marine environments and determine the effects of local sewerage and tip-site pollution. We will also investigate the impact on the algal mats of the additional UV radiation which results from the ozone hole. Public summary from project 2201: As a signatory to the Protocol on Environmental Protection to the Antarctic Treaty Australia is committed to comprehensive protection of the Antarctic environment. This protocol requires that activities in the Antarctic shall be planned and conducted on the basis of information sufficient to make prior assessments of, and informed judgements about, their possible impacts on the Antarctic environment. Most of our activities in the Antarctic occur along the narrow fringe of ice-free rock adjacent to the sea and many of our activities have the potential to cause environmental harm to marine life. The Antarctic seas support the most complex and biologically diverse plant and animal communities of the region. However, very little is known about them and there is certainly not sufficient known to make informed judgements about possible environmental impacts The animals and plants of the sea-bed are widely accepted as being the most appropriate part of the marine ecosystem for indicating disturbance caused by local sources. Attached sea-bed organisms have a fixed spatial relationship with a given place so they must either endure conditions or die. Once lost from a site recolonisation takes some time, as a consequence the structure of sea-bed communities reflect not only present conditions but they can also integrate conditions in the past. In contrast, fish and planktonic organisms can move freely so their site of capture does not indicate a long residence time at that location. Because sea-bed communities are particularly diverse they contain species with widely differing life strategies, as a result different species can have very different levels of tolerance to stress; this leads to a range of subtle changes in community structure as a response to gradually increasing disturbance, rather than an all or nothing response. This project will examine sea-bed communities near our stations to determine how seriously they are affected by human activities. This information will be used to set priorities for improving operational procedures to reduce the risk of further environmental damage. The fields in this dataset are: bbg_lat spreadsheet Site Latitude Longitude Easting Northing Diatoms spreadsheet Species Site Abundance Transect Metals Spreadsheet Sample Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Tin Zinc Total Organic Carbon Easting Northing TPH Spreadsheet Site Total Purgeable Hydrocarbons Fraction of Purgeable HydrocarbonsProgress Code: completed&rft.creator=Riddle, M.J., Stark, J.S. and Cunningham, L.K. &rft.creator=RIDDLE, MARTIN J. &rft.creator=STARK, JONATHAN SEAN &rft.creator=CUNNINGHAM, LAURA KAY &rft.date=2003&rft.coverage=westlimit=110.45; southlimit=-66.5; eastlimit=110.7; northlimit=-66.2&rft.coverage=westlimit=110.45; southlimit=-66.5; eastlimit=110.7; northlimit=-66.2&rft_rights=This metadata record is publicly available.&rft_rights=These data are publicly available for download from the provided URL.&rft_rights= https://creativecommons.org/licenses/by/4.0/legalcode&rft_rights=This data set conforms to the CCBY Attribution License (http://creativecommons.org/licenses/by/4.0/). Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=Diatoms_bbg when using these data. http://creativecommons.org/licenses/by/4.0/).&rft_rights=Portable Network Graphic&rft_rights=https://i.creativecommons.org/l/by/3.0/88x31.png&rft_rights=Creative Commons by Attribution logo&rft_rights=Attribution 4.0 International (CC BY 4.0)&rft_rights=Legal code for Creative Commons by Attribution 4.0 International license&rft_rights=Attribution 4.0 International (CC BY 4.0)&rft_rights= https://creativecommons.org/licenses/by/4.0/legalcode&rft_subject=biota&rft_subject=oceans&rft_subject=EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > DIATOMS&rft_subject=EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PLANTS > MICROALGAE > DIATOMS&rft_subject=EARTH SCIENCE > BIOSPHERE > ECOSYSTEMS > MARINE ECOSYSTEMS > BENTHIC&rft_subject=EARTH SCIENCE > BIOSPHERE > ECOSYSTEMS > MARINE ECOSYSTEMS > COASTAL&rft_subject=EARTH SCIENCE > BIOSPHERE > ECOLOGICAL DYNAMICS > COMMUNITY DYNAMICS > COMMUNITY STRUCTURE&rft_subject=ABUNDANCE&rft_subject=ANTARCTICA&rft_subject=ANTIMONY&rft_subject=ARSENIC&rft_subject=CADMIUM&rft_subject=CHROMIUM&rft_subject=CONTAMINANTS&rft_subject=COPPER&rft_subject=DIATOMS&rft_subject=EASTING&rft_subject=IRON&rft_subject=LATITUDE&rft_subject=LEAD&rft_subject=LONGITUDE&rft_subject=MANGANESE&rft_subject=MARINE BAYS&rft_subject=MERCURY&rft_subject=NICKEL&rft_subject=NORTHING&rft_subject=SAMPLE&rft_subject=SILVER&rft_subject=SITE&rft_subject=SPECIES&rft_subject=TIN&rft_subject=TOTAL ORGANIC CARBON&rft_subject=TOTAL PURGEABLE HYDROCARBONS&rft_subject=TPH&rft_subject=TRANSECTS&rft_subject=ZINC&rft_subject=GRAB SAMPLERS&rft_subject=FIELD SURVEYS&rft_subject=AMD/AU&rft_subject=CEOS&rft_subject=AMD&rft_subject=CONTINENT > ANTARCTICA > Windmill Islands&rft_subject=GEOGRAPHIC REGION > POLAR&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Other view details
Unknown

https://creativecommons.org/licenses/by/4.0/legalcode

This data set conforms to the CCBY Attribution License
(http://creativecommons.org/licenses/by/4.0/).

Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=Diatoms_bbg when using these data.
http://creativecommons.org/licenses/by/4.0/).

Attribution 4.0 International (CC BY 4.0)

https://creativecommons.org/licenses/by/4.0/legalcode

This metadata record is publicly available.

These data are publicly available for download from the provided URL.

Portable Network Graphic

https://i.creativecommons.org/l/by/3.0/88x31.png

Creative Commons by Attribution logo

Attribution 4.0 International (CC BY 4.0)

Legal code for Creative Commons by Attribution 4.0 International license

Access:

Other

Brief description

Sediment samples were collected from nine points along 3 parallel transects within the contaminated Brown Bay. The diatom spreadsheet (diatom_data) contains both initial diatom counts and the relative abundance of benthic species. The abbreviation used to identify species are explained in the separate file called sp_list. Metal, Total Purgeable Hydrocarbons (TPH), and grain-size data are all presented as separate files. This work was completed as part of ASAC project 1130 (ASAC_1130) and project 2201 (ASAC_2201). Public summary from project 1130: Algal mats grow on sea floor in most shallow marine environments. They are thought to contribute more than half of the total primary production in many of these areas, making them a critical food source for invertebrates and some fish. We will establish how important they are in Antarctic marine environments and determine the effects of local sewerage and tip-site pollution. We will also investigate the impact on the algal mats of the additional UV radiation which results from the ozone hole. Public summary from project 2201: As a signatory to the Protocol on Environmental Protection to the Antarctic Treaty Australia is committed to comprehensive protection of the Antarctic environment. This protocol requires that activities in the Antarctic shall be planned and conducted on the basis of information sufficient to make prior assessments of, and informed judgements about, their possible impacts on the Antarctic environment. Most of our activities in the Antarctic occur along the narrow fringe of ice-free rock adjacent to the sea and many of our activities have the potential to cause environmental harm to marine life. The Antarctic seas support the most complex and biologically diverse plant and animal communities of the region. However, very little is known about them and there is certainly not sufficient known to make informed judgements about possible environmental impacts The animals and plants of the sea-bed are widely accepted as being the most appropriate part of the marine ecosystem for indicating disturbance caused by local sources. Attached sea-bed organisms have a fixed spatial relationship with a given place so they must either endure conditions or die. Once lost from a site recolonisation takes some time, as a consequence the structure of sea-bed communities reflect not only present conditions but they can also integrate conditions in the past. In contrast, fish and planktonic organisms can move freely so their site of capture does not indicate a long residence time at that location. Because sea-bed communities are particularly diverse they contain species with widely differing life strategies, as a result different species can have very different levels of tolerance to stress; this leads to a range of subtle changes in community structure as a response to gradually increasing disturbance, rather than an all or nothing response. This project will examine sea-bed communities near our stations to determine how seriously they are affected by human activities. This information will be used to set priorities for improving operational procedures to reduce the risk of further environmental damage. The fields in this dataset are: bbg_lat spreadsheet Site Latitude Longitude Easting Northing Diatoms spreadsheet Species Site Abundance Transect Metals Spreadsheet Sample Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Tin Zinc Total Organic Carbon Easting Northing TPH Spreadsheet Site Total Purgeable Hydrocarbons Fraction of Purgeable Hydrocarbons

Lineage

Progress Code: completed

Data time period: 1998-09-01 to 1998-12-31

This dataset is part of a larger collection

Click to explore relationships graph

110.7,-66.2 110.7,-66.5 110.45,-66.5 110.45,-66.2 110.7,-66.2

110.575,-66.35

text: westlimit=110.45; southlimit=-66.5; eastlimit=110.7; northlimit=-66.2

Other Information
Download point for the data (GET DATA)

uri : https://data.aad.gov.au/eds/1169/download

Identifiers
  • global : Diatoms_bbg