grant

Development and evaluation of biological reagents targeting and inhibiting function of the EphA3 receptor on tumor cells [ 2003 - 2005 ]

Also known as: Inhibiting metastatic tumours by targeting Eph receptors

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/234707]

Researchers: A/Pr Martin Lackmann (Principal investigator) ,  Dr Fook Lee Prof Andrew Scott

Brief description Eph receptors and their ligands regulate morphogenesis in the embryo; they direct migration and positioning of cells during the formation of tissue layers and organ systems. There is little evidence for a function of Ephs in adult tissues. However, their abundant, un-scheduled occurrence in various malignant tumours, indicates a role in cancer. Human EphA3, the principle subject of this proposal, is not found in adult tissue but is present at high levels in lung, kidney and brain tumours, leukemia and malignant melanoma. High levels of EphA3 and corresponding ligands correlate with melanoma progression, and EphA3 stimulation triggers repulsion and detachment of melanoma cells. It is likely that Eph A3 is involved in release and spreading of tumour cells during melanoma progression. We have characterised reagents, the soluble EphA3 ligand and a monoclonal anti-EphA3 antibody, which bind EphA3 with high affinity and specificity. We will use these two proteins, or modified forms containing attached radiochemicals or cytotoxins, to target human tumours that were implanted into into immuno-deficient mice as animal model system. Our studies will determine if the specificity of our reagents, suggested from previous in-vitro studies, will allow imaging of EphA3 containing tumours, and effect their targeted killing. We will also use a tissue culture model, containing artificial epidermal and dermal layers of skin cells, to study if an inhibitory form of the EphA3 ligand will affect the invasiveness of EphA3 positive, metastatic melanoma cells. Furthermore, we will identify essential parts of this ligand to develop inhibitors with improved pharmacological properties. Together, our studies will establish the role for EphA3 in cancer progression and to assess the efficacy of EphA3 targeting for tumor killing and prevention of metastasis. We envision that this will provide the groundwork for Eph-specific reagents with anti-metastatic action in cancer therapy.

Funding Amount $AUD 490,500.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]