grant

Development of DNA Phosphate Crosslinking Agents as Potential Anticancer Drugs [ 2001 - 2003 ]

Also known as: Development of Novel DNA Binding Anticancer Drugs

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/157061]

Researchers: A/Pr Laurence Wakelin (Principal investigator) ,  A/Pr Stewart Bernard

Brief description The principal difficulty in the treatment of the common solid tumours that cause the majority of cancer deaths is the problem of drug resistance. For example, many patients with cancer of the lung, breast or colon respond well to drug treatment with their tumours initially regressing, only to return later in an aggressive drug-resistant form. In this event, the inevitable outcome is that the tumour grows through drug treatment and the patient eventually succumbs and dies. This is also a familiar scenario in the treatment of adults with leukaemias and non-Hodgkins lymphomas. The underlying cause of drug resistance is the genetic instability of cancer cells which results in tumours that are heterogeneous, making it almost inevitable that a cancer cell will arise that is resistant to treatment. There are many mechanisms of resistance, some of which are peculiar to particular drug types, some are permeability barriers and some involve genetic deregulation of the biochemistry of cell death. Alkylating agents are one of the most important classes of anticancer drug. They bind irreversibly to the bases in DNA and weld the two strands of the double helix together. This cross-link is a powerful block to DNA replication and leads to the death of cancer cells by the process of programmed cell death. Cancer cells generally become resistant to alkylating agents by invoking repair mechanisms that remove the drug from the DNA bases, a response which breaks the cross-link and returns the DNA to its normal state. In this project, we are developing a new type of alkylating agent that reacts not with the DNA bases but with the phosphate groups of the DNA backbone. By this means the strands of DNA can again be cross-linked but now the linkage is between parts of the DNA that cancer cells cannot separate. In this way, we hope to be able to devise new drugs that are resistant to the normal mechanisms of DNA repair so that they will be active against drug-resistant tumours.

Funding Amount $AUD 392,545.90

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]