Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/457572]Researchers: A/Pr Peter Middleton (Principal investigator) , Prof David Cook
Brief description The air passages of the lungs are lined by mucous membranes. These membranes are covered by a thin layer of fluid to protect the airways from drying. This fluid allows the cilia, the hair like projections on top of the airway cells to beat more effectively to remove mucous and inhaled particles from the lungs. The volume and composition of this fluid is determined by the salt and water movement across the mucous membranes of the airways. These processes are abnormal in cystic fibrosis (CF), the most common lethal inherited disease affecting Australians. In CF, an abnormal gene disrupts one of the major mechanisms for salt and water movement in the air passages. This abnormal salt transport causes drying of the airway surface which impairs the working of the cilia. This leads to retention of mucous in the airways with repeated bacterial infections damaging the lungs. Over the last 10 years, we have developed a series of simple tests to measure the abnormalities in the CF airway of human subjects. We have isolated an exciting new clinical application for sodium citrate, a substance used in blood transfusions. Citrate appears to alter both the salt transport abnormalities found in CF. This research proposal seeks to better understand the dual effects of citrate and to test similar compounds that may have stronger effects. The ultimate aim of our research is to have sufficient knowledge to work out the best way to develop a new treatment for CF.
Funding Amount $AUD 444,491.71
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 457572
- PURL : https://purl.org/au-research/grants/nhmrc/457572