grant

Determination of sympathetic preganglionic neuronal phenotype [ 2001 - 2003 ]

Also known as: How neurons are guided in their development

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/145634]

Researchers: A/Pr Colin Anderson (Principal investigator) ,  Dr Susan Murphy

Brief description The nervous system is the single most complex part of our body. Its function depends on millions of connections between neurons, all of which must form correctly during development. Furthermore, each neuron must select a neurotransmitter with which to talk to its target neuron. A neurotransmitter is a chemical released from a neuron, which passes a signal to a target cell. Some neurotransmitters cause excitation of the target cell, others inhibition. Each neurotransmitter signals to the target cell via receptor molecule, matched to the neurotransmitter. Thus, a neuron is faced not only with making choices about what connections to make within the developing brain, but also it must select from a range of potential neurotransmitters and receptor molecules. We are interested in how neurons select the appropriate neurotransmitter. There are a number of ways that a neuron might be guided to the correct choice. It is possible that it could receive from the target cell a signal that guides the choice of neurotransmitter. We wish to examine this hypothesis to see if it is applicable to the autonomic nervous system, that part of the nervous system that controls functions like changes in blood pressure and heart rate. Our laboratory is expert in identifying the chemistry of autonomic neurons. We will use this knowledge to see what happens when we deliberately perturb the normal connections of autonomic neurons. Do they persist in expressing the neurotransmitters they would have done prior to the perturbation? Alternatively, do they adapt to the change of target via a signal received from the new target cell and express the appropriate phenotype? The results of these experiments will give insights into how the brain develops. The results will be important for both our basic understanding of biology and as a basis for the development of techniques for reversing neuronal damage.

Funding Amount $AUD 241,527.54

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]