grant

Defining the genetic causes of the abnormal vertebral segmentation syndrome, spondylocostal dysostosis [ 2006 - 2008 ]

Also known as: Defining genes responsible for development of the vertebral column in humans

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/404804]

Researchers: Prof Sally Dunwoodie (Principal investigator) ,  Dr Duncan Sparrow

Brief description There are many birth defects that cause vertebral malformations along the spinal column. These occur as the embryo develops in utero, during the formation of structures known as somites. Somites also form the ribs, muscle, tendons and dermis. We are studying an example of this type of birth defect called spondylocostal dysostosis (SCD). We have shown that mutations in three different genes cause some cases of this inherited disease in humans. These genes are called DLL3, MESP2 and LFNG. However, 80% of SCD patients do not have a mutation in any of these genes. Thus we need to discover how these other cases occur. This project uses two strategies in parallel. Firstly, we will analyse large families that have a history of SCD, and use this information to find causative gene mutations. However, a significant proportion of cases occur without family history. To find out what genes are involved in these cases is more difficult. We have created a mutant mouse by specifically deleting the DLL3 gene. This mouse has very similar vertebral malformations to SCD. We will compare embryos from normal and mutant mice to find genes that do not operate normally in the mutant. These genes are candidates for causing SCD, and thus we will screen these genes in human patients for mutations. However, simply finding a change in a candidate gene does not necessarily mean that this is the cause of SCD. To prove this, we have developed several tests to determine if the mutation alters the normal function of the protein encoded by the mutated gene. This work will greatly benefit the future genetic assessment of SCD patients. In addition, by studying our mouse model of SCD, we will gain a greater understanding of how DLL3 functions. This knowledge may be useful in developing stem cell-based therapies that involve the production of specific cell types.

Funding Amount $AUD 476,523.48

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]