Data

Crystal structure of scabies mite inactivated protease paralogue S-D1 (SMIPP-S-D1)

Australian Synchrotron
Ulrich Felzmann (Managed by)
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=http://store.synchrotron.org.au/experiment/view/879&rft.title=Crystal structure of scabies mite inactivated protease paralogue S-D1 (SMIPP-S-D1)&rft.publisher=Australian Synchrotron&rft.description=The scabies mite (Sarcoptes scabiei) is a parasitic mite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed Scabies Mite Inactivated Protease Paralogues (SMIPPs). The precise function of SMIPPs remains unclear. However, it has been suggested that these proteins may function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 and 2.0 A resolution respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical canonical fashion, and instead have evolved alternative functions in the lifecycle of the Scabies mite. To cite this data use the following DOI: 10.4225/52/557FA7A6C8287&rft.creator=Anonymous&rft.date=1970&rft_rights=Unspecified License http://en.wikipedia.org/wiki/Copyright#Exclusive_rights&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Other view details

Access:

Open view details

All data is publicly available online.

Brief description

The scabies mite (Sarcoptes scabiei) is a parasitic mite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed Scabies Mite Inactivated Protease Paralogues (SMIPPs). The precise function of SMIPPs remains unclear. However, it has been suggested that these proteins may function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 and 2.0 A resolution respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical "canonical" fashion, and instead have evolved alternative functions in the lifecycle of the Scabies mite. To cite this data use the following DOI: 10.4225/52/557FA7A6C8287

This dataset is part of a larger collection

Click to explore relationships graph

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover