grant

Cortical interactions of parallel afferent channels underlying visual perception, attention and memory [ 2003 - 2005 ]

Also known as: Parallel channels in vision

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/251600]

Researchers: Prof Trichur Vidyasagar (Principal investigator) ,  Prof Bogdan Dreher

Brief description The visual pathways from the eyes to the brain consist of distinct groups of cells which are specialised to signal different aspects of the visual scene such as colour, contrast and movement. As the information they carry is relayed through and processed in many different regions of the brain these parallel information channels were, until recently, believed to remain completely separate from each other. Furthermore, it had been proposed that as the information reaches the visual neocortex the information is channeled through two main largely parallel information processing streams, a dorsal stream to the parietal cortex (a where system) and a ventral stream to the temporal cortex (a what system). However, our recent functional studies (and anatomical studies from other laboratories) have indicated that the different information channels do interact already at a relatively early level of the visual pathway, namely in the primary visual cortex. We have shown this in two ways: (1) there is convergence of different information channels on individual neurones in the primary visual cortex; (2) signals from the faster where pathway comes back to the primary visual cortex to gate the slower channels going into the ventral what pathway. We have seen this occur in an attention paradigm and in a memory task. We will explore these interactions further to test hypotheses about: (1) how the convergence of different information channels relate to the functional and anatomical architecture of the visual cortex; (2) investigate at length the most poorly understood, the so-called koniocellular pathway from the retina to the cortex. This pathway seems to contain a specialised component which carries information about blue objects; (3) identify the source of the spotlight of attention we have discovered and (4) how and from where early visual structures receive the gating inputs in certain memory tasks.

Funding Amount $AUD 410,250.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]