Data

Collie Flux Data Release 2022_v1

Terrestrial Ecosystem Research Network
Beringer, Jason
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.25901/xs5y-z598&rft.title=Collie Flux Data Release 2022_v1&rft.identifier=10.25901/xs5y-z598&rft.publisher=Terrestrial Ecosystem Research Network&rft.description=This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), https://doi.org/10.5194/bg-14-2903-2017. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see https://github.com/OzFlux/PyFluxPro/wiki. The Collie flux station was located approximately 10km southeast of Collie, near Perth, Western Australia. It was established in August 2017 and stopped measuring in November 2019. All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 .Progress Code: completedMaintenance and Update Frequency: notPlanned&rft.creator=Beringer, Jason &rft.date=2022&rft.edition=1.0&rft.relation=https://doi.org/10.5194/bg-14-2903-2017&rft.relation=https://doi.org/10.5194/bg-13-5895-2016&rft.coverage=Approximately 150km South of Perth, Western Australia&rft.coverage=northlimit=-33.42; southlimit=-33.42; westlimit=116.237; eastLimit=116.237; projection=EPSG:4326&rft_rights=Creative Commons Attribution 4.0 International Licence http://creativecommons.org/licenses/by/4.0&rft_rights=&rft_rights=TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure. <br /><br />Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.<br /><br />Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting&rft_subject=climatologyMeteorologyAtmosphere&rft_subject=BIOGEOCHEMICAL PROCESSES&rft_subject=EARTH SCIENCE&rft_subject=SOLID EARTH&rft_subject=GEOCHEMISTRY&rft_subject=LAND PRODUCTIVITY&rft_subject=LAND SURFACE&rft_subject=LAND USE/LAND COVER&rft_subject=EVAPOTRANSPIRATION&rft_subject=ATMOSPHERE&rft_subject=ATMOSPHERIC WATER VAPOR&rft_subject=TERRESTRIAL ECOSYSTEMS&rft_subject=BIOSPHERE&rft_subject=ATMOSPHERIC PRESSURE MEASUREMENTS&rft_subject=ATMOSPHERIC PRESSURE&rft_subject=TURBULENCE&rft_subject=WIND SPEED&rft_subject=WIND DIRECTION&rft_subject=TRACE GASES/TRACE SPECIES&rft_subject=ATMOSPHERIC CHEMISTRY&rft_subject=ATMOSPHERIC CARBON DIOXIDE&rft_subject=PHOTOSYNTHETICALLY ACTIVE RADIATION&rft_subject=LONGWAVE RADIATION&rft_subject=SHORTWAVE RADIATION&rft_subject=INCOMING SOLAR RADIATION&rft_subject=ATMOSPHERIC RADIATION&rft_subject=HEAT FLUX&rft_subject=AIR TEMPERATURE&rft_subject=ATMOSPHERIC TEMPERATURE&rft_subject=SURFACE TEMPERATURE&rft_subject=PRECIPITATION AMOUNT&rft_subject=PRECIPITATION&rft_subject=HUMIDITY&rft_subject=SOIL MOISTURE/WATER CONTENT&rft_subject=SOIL TEMPERATURE&rft_subject=ATMOSPHERIC SCIENCES&rft_subject=EARTH SCIENCES&rft_subject=ECOLOGICAL APPLICATIONS&rft_subject=ENVIRONMENTAL SCIENCES&rft_subject=Ecosystem Function&rft_subject=ENVIRONMENTAL SCIENCE AND MANAGEMENT&rft_subject=Environmental Monitoring&rft_subject=SOIL SCIENCES&rft_subject=Collie Flux Station&rft_subject=Hukseflux HFP01&rft_subject=Campbell Scientific TCAV Averaging Soil Thermocouple Probe&rft_subject=LI-COR LI-7500&rft_subject=Kipp&Zonen CNR4&rft_subject=Campbell Scientific CS616&rft_subject=Campbell Scientific CSAT3&rft_subject=air temperature (degree Celsius)&rft_subject=degree Celsius&rft_subject=downward heat flux at ground level in soil (Watt per Square Meter)&rft_subject=Watt per Square Meter&rft_subject=eastward wind (Meter per Second)&rft_subject=Meter per Second&rft_subject=magnitude of surface downward stress (Kilograms per metre per square second)&rft_subject=Kilograms per metre per square second&rft_subject=mass concentration of carbon dioxide in air (Milligram per Cubic Meter)&rft_subject=Milligram per Cubic Meter&rft_subject=mass concentration of water vapor in air (Gram per Cubic Meter)&rft_subject=Gram per Cubic Meter&rft_subject=mole fraction of carbon dioxide in air (Micromoles per mole)&rft_subject=Micromoles per mole&rft_subject=mole fraction of water vapor in air (Millimoles per mole)&rft_subject=Millimoles per mole&rft_subject=Monin-Obukhov length (Meter)&rft_subject=Meter&rft_subject=northward wind (Meter per Second)&rft_subject=relative humidity (Percent)&rft_subject=Percent&rft_subject=soil temperature (degree Celsius)&rft_subject=specific humidity (Kilogram per Kilogram)&rft_subject=Kilogram per Kilogram&rft_subject=specific humidity saturation deficit in air (Kilogram per Kilogram)&rft_subject=surface air pressure (Kilopascal)&rft_subject=Kilopascal&rft_subject=surface downwelling longwave flux in air (Watt per Square Meter)&rft_subject=surface downwelling shortwave flux in air (Watt per Square Meter)&rft_subject=surface friction velocity (Meter per Second)&rft_subject=surface net downward radiative flux (Watt per Square Meter)&rft_subject=surface upward flux of available energy (Watt per Square Meter)&rft_subject=surface upward latent heat flux (Watt per Square Meter)&rft_subject=surface upward mole flux of carbon dioxide (Micromoles per square metre second)&rft_subject=Micromoles per square metre second&rft_subject=surface upward sensible heat flux (Watt per Square Meter)&rft_subject=surface upwelling longwave flux in air (Watt per Square Meter)&rft_subject=surface upwelling shortwave flux in air (Watt per Square Meter)&rft_subject=upward mole flux of carbon dioxide due inferred from storage (Micromoles per square metre second)&rft_subject=vertical wind (Meter per Second)&rft_subject=volume fraction of condensed water in soil (Cubic Meter per Cubic Meter)&rft_subject=Cubic Meter per Cubic Meter&rft_subject=water vapor partial pressure in air (Kilopascal)&rft_subject=water vapor saturation deficit in air (Kilopascal)&rft_subject=wind from direction (Degree)&rft_subject=Degree&rft_subject=wind speed (Meter per Second)&rft_subject=Point Resolution&rft_subject=1 minute - < 1 hour&rft_subject=AU-Col&rft_subject=dry eucalypt woodland&rft_subject=eddy covariance&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 4.0 International Licence
http://creativecommons.org/licenses/by/4.0

TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure.

Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.

Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting

Access:

Open view details

unclassified

Contact Information

Street Address:
Terrestrial Ecosystem Research Network
Building 1019, 80 Meiers Rd
QLD 4068
Australia
Ph: +61 7 3365 9097

esupport@tern.org.au

Brief description

This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), https://doi.org/10.5194/bg-14-2903-2017. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see https://github.com/OzFlux/PyFluxPro/wiki.

The Collie flux station was located approximately 10km southeast of Collie, near Perth, Western Australia. It was established in August 2017 and stopped measuring in November 2019.

Lineage

All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 .

Progress Code: completed
Maintenance and Update Frequency: notPlanned

Notes

Credit
We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
The Collie Flux Site was managed by the University of Western Australia. The flux station was part of the Australian OzFlux Network and the international FLUXNET Network.
Purpose
The purpose of the Collie flux station was:
to provides nationally consistent observations micrometeorology (climate, radiation, fluxes of carbon and water).
to provide long-term measurements as part of the OzFlux network
The tower was a component of the UWA critical zone observatory.

Created: 2022-03-17

Issued: 2022-03-27

Modified: 2024-05-04

Data time period: 2017-08-04 to 2019-11-11

This dataset is part of a larger collection

Click to explore relationships graph

116.237,-33.42

116.237,-33.42

text: Approximately 150km South of Perth, Western Australia

Subjects
1 minute - < 1 hour | AIR TEMPERATURE | ATMOSPHERE | ATMOSPHERIC CARBON DIOXIDE | ATMOSPHERIC CHEMISTRY | ATMOSPHERIC PRESSURE | ATMOSPHERIC PRESSURE MEASUREMENTS | ATMOSPHERIC RADIATION | Atmospheric Sciences | ATMOSPHERIC TEMPERATURE | ATMOSPHERIC WATER VAPOR | AU-Col | BIOGEOCHEMICAL PROCESSES | BIOSPHERE | Campbell Scientific CS616 | Campbell Scientific CSAT3 | Campbell Scientific TCAV Averaging Soil Thermocouple Probe | Collie Flux Station | Cubic Meter per Cubic Meter | Degree | EARTH SCIENCE | Earth Sciences | Ecological Applications | Environmental Science and Management | Environmental Sciences | EVAPOTRANSPIRATION | Ecosystem Function | Environmental Monitoring | GEOCHEMISTRY | Gram per Cubic Meter | HEAT FLUX | HUMIDITY | Hukseflux HFP01 | INCOMING SOLAR RADIATION | Kilogram per Kilogram | Kilograms per metre per square second | Kilopascal | Kipp&Zonen CNR4 | LAND PRODUCTIVITY | LAND SURFACE | LAND USE/LAND COVER | LI-COR LI-7500 | LONGWAVE RADIATION | Meter | Meter per Second | Micromoles per mole | Micromoles per square metre second | Milligram per Cubic Meter | Millimoles per mole | Monin-Obukhov length (Meter) | PHOTOSYNTHETICALLY ACTIVE RADIATION | PRECIPITATION | PRECIPITATION AMOUNT | Percent | Point Resolution | SHORTWAVE RADIATION | SOIL MOISTURE/WATER CONTENT | Soil Sciences | SOIL TEMPERATURE | SOLID EARTH | SURFACE TEMPERATURE | TERRESTRIAL ECOSYSTEMS | TRACE GASES/TRACE SPECIES | TURBULENCE | WIND DIRECTION | WIND SPEED | Watt per Square Meter | air temperature (degree Celsius) | climatologyMeteorologyAtmosphere | degree Celsius | downward heat flux at ground level in soil (Watt per Square Meter) | dry eucalypt woodland | eastward wind (Meter per Second) | eddy covariance | magnitude of surface downward stress (Kilograms per metre per square second) | mass concentration of carbon dioxide in air (Milligram per Cubic Meter) | mass concentration of water vapor in air (Gram per Cubic Meter) | mole fraction of carbon dioxide in air (Micromoles per mole) | mole fraction of water vapor in air (Millimoles per mole) | northward wind (Meter per Second) | relative humidity (Percent) | soil temperature (degree Celsius) | specific humidity (Kilogram per Kilogram) | specific humidity saturation deficit in air (Kilogram per Kilogram) | surface air pressure (Kilopascal) | surface downwelling longwave flux in air (Watt per Square Meter) | surface downwelling shortwave flux in air (Watt per Square Meter) | surface friction velocity (Meter per Second) | surface net downward radiative flux (Watt per Square Meter) | surface upward flux of available energy (Watt per Square Meter) | surface upward latent heat flux (Watt per Square Meter) | surface upward mole flux of carbon dioxide (Micromoles per square metre second) | surface upward sensible heat flux (Watt per Square Meter) | surface upwelling longwave flux in air (Watt per Square Meter) | surface upwelling shortwave flux in air (Watt per Square Meter) | upward mole flux of carbon dioxide due inferred from storage (Micromoles per square metre second) | vertical wind (Meter per Second) | volume fraction of condensed water in soil (Cubic Meter per Cubic Meter) | water vapor partial pressure in air (Kilopascal) | water vapor saturation deficit in air (Kilopascal) | wind from direction (Degree) | wind speed (Meter per Second) |

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover