Data

Coastal seagrass habitat suitability model (wet and dry season) in the Great Barrier Reef World Heritage Area (MTSRF, JCU)

Australian Ocean Data Network
Grech, Alana, Dr ; Coles, Rob, Dr
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=https://eatlas.org.au/data/uuid/284c3108-accc-4739-a4b1-4ec13c3cc0c6&rft.title=Coastal seagrass habitat suitability model (wet and dry season) in the Great Barrier Reef World Heritage Area (MTSRF, JCU)&rft.identifier=https://eatlas.org.au/data/uuid/284c3108-accc-4739-a4b1-4ec13c3cc0c6&rft.description=This dataset is consists of modelled habitat suitability of coastal seagrass distribution in the wet and dry seasons along the Great Barrier Reef World Heritage Area coastline. A Bayesian belief network was used to quantify the relationship (dependencies) between seagrass and eight environmental drivers: relative wave exposure, bathymetry, spatial extent of flood plumes, season, substrate, region, tidal range and sea surface temperature. We found that at the scale of the entire GBRWHA, the main drivers of inshore seagrass presence are tidal range and relative exposure. The outputs of our analysis included a probabilistic GIS-surface of inshore seagrass presence and distribution for both the wet and dry seasons, and across four regions at the scale of 2km*2km planning units. The model can be used by managers in the GBRWHA to delineate seagrass ecological units, and assist them in marine planning at broad spatial scales. For more information about methods see: Grech, A. and Coles, R.J. 2010, An ecosystem-scale predictive model of coastal seagrass distribution, Aquatic Conservation: Marine and Freshwater Ecosystems 20: 437-444 Data Location: This dataset is filed in the eAtlas enduring data repository at: data\MTSRF\QLD_MTSRF-1-1-3_JCU_Grech-A_Seagrass-coastal-model-2007Statement: This dataset was developed as part of a Alana Grech's PhD: Spatial models and risk assessments to inform marine planning at ecosystem-scales: seagrasses and dugongs as a case study, James Cook University, 2009.&rft.creator=Grech, Alana, Dr &rft.creator=Coles, Rob, Dr &rft.date=2009&rft.coverage=NaN -10.69407329078331 NaN -10.961762653939221 NaN -10.96771130645379 NaN -11.128324924347337 NaN -11.27109258469716 NaN -11.520935990309342 NaN -11.87785514118389 NaN -11.9492389713588 NaN -11.93139301381507 NaN -12.032520106562862 NaN -12.157441809368951 NaN -12.34779868983537 NaN -12.37159329989368 NaN -12.556001527845519 NaN -12.62738535802043 NaN -12.79989628094313 NaN -12.91886933123465 NaN -12.865331458603459 NaN -13.103277559186498 NaN -13.35312096479868 NaN -13.41260748994444 NaN -13.63865628549831 NaN -13.817115860935589 NaN -13.995575436372862 NaN -14.17998366432471 NaN -14.41198111239316 NaN -14.49526224759723 NaN -14.483364942568071 NaN -14.35844323976198 NaN -14.310854019645378 NaN -14.28705940958707 NaN -14.293008062101652 NaN -14.49526224759723 NaN -14.63208125543247 NaN -14.780797568296862 NaN -14.98305175379244 NaN -15.14961402420056 NaN -15.28048437952123 NaN -15.464892607473082 NaN -15.57196835273544 NaN -15.76232523320186 NaN -15.905092893551682 NaN -16.08950112150353 NaN -16.19062821425132 NaN -16.42262566231977 NaN -16.58323928021332 NaN -16.91041516851499 NaN -16.92231247354414 NaN -17.04723417635023 NaN -17.26733431938953 NaN -17.46958850488511 NaN -17.65994538535153 NaN -17.78486708815763 NaN -18.01686453622608 NaN -18.15368354406132 NaN -18.39162964464435 NaN -18.57008922008163 NaN -18.81993262569381 NaN -18.99839220113108 NaN -19.224440996684965 NaN -19.32556808943275 NaN -19.26013291177242 NaN -19.44454113972427 NaN -19.44454113972427 NaN -19.652743977734424 NaN -19.7300764604239 NaN -19.84904951071542 NaN -19.950176603463213 NaN -20.1226875263859 NaN -20.176225399017092 NaN -20.11673887387133 NaN -20.295198449308604 NaN -20.34873632193978 NaN -20.44391476217299 NaN -20.43201745714384 NaN -20.586682422522813 NaN -20.80083391304754 NaN -20.949550225911942 NaN -21.0804205812326 NaN -21.16370171643666 NaN -21.294572071757333 NaN -21.31241802930106 NaN -21.39569916450512 NaN -21.550364129884095 NaN -21.58605604497154 NaN -21.75261831537966 NaN -21.913231933273213 NaN -22.19876725397285 NaN -22.323688956778938 NaN -22.39507278695385 NaN -22.56163505736197 NaN -22.46645661712876 NaN -22.69845406519721 NaN -22.662762150109764 NaN -22.37722682941012 NaN -22.246356474089445 NaN -22.145229381341675 NaN -22.35343221935182 NaN -22.478353922157908 NaN -22.68060810765348 NaN -22.549737752332817 NaN -22.69250541268264 NaN -22.98398938589685 NaN -23.14460300379039 NaN -23.26357605408191 NaN -23.346857189285966 NaN -23.513419459694095 NaN -23.638341162500176 NaN -23.63239250998561 NaN -23.70377634016052 NaN -23.97146570331643 NaN -24.078541448578793 NaN -24.00715761840388 NaN -24.102336058637093 NaN -24.20941180389946 NaN -24.459255209511642 NaN -24.57227960728858 NaN -24.49494712459909 NaN -24.31648754916182 NaN -24.11423336366624 NaN -24.06664414354964 NaN -23.94767109325812 NaN -23.91792783068524 NaN -23.62644385747103 NaN -23.459881587062913 NaN -23.23978144402361 NaN -22.98993803841142 NaN -22.87096498811991 NaN -22.64491619256603 NaN -22.39507278695385 NaN -22.276099736662328 NaN -22.1868699489437 NaN -22.16902399139997 NaN -22.157126686370816 NaN -21.99651306847727 NaN -21.87159136567118 NaN -21.913231933273213 NaN -22.02625633105015 NaN -21.93702654333151 NaN -21.80020753549627 NaN -21.722875052806792 NaN -21.62769661257357 NaN -21.65743987514645 NaN -21.49087760473833 NaN -21.36000724941766 NaN -21.270777461699033 NaN -21.318366681815633 NaN -21.19939363152412 NaN -20.96739618345566 NaN -20.812731218076692 NaN -20.72945008287263 NaN -20.60452838006654 NaN -20.42606880462927 NaN -20.26545518673572 NaN -20.00966312860896 NaN -20.00966312860896 NaN -20.20002000907539 NaN -20.20002000907539 NaN -20.0988929163276 NaN -19.93827929843405 NaN -20.00371447609439 NaN -19.86094681574457 NaN -19.82525490065711 NaN -19.79551163808424 NaN -19.69438454533645 NaN -19.676538587792724 NaN -19.41479787715139 NaN -19.31961943691817 NaN -19.24823560674327 NaN -19.2898761743453 NaN -19.21849234417039 NaN -19.18874908159751 NaN -19.040032768733113 NaN -19.040032768733113 NaN -18.98054624358736 NaN -18.7247541854606 NaN -18.53439730499417 NaN -18.49870538990672 NaN -18.14178623903217 NaN -18.09419701891557 NaN -17.88004552839084 NaN -17.56476694511832 NaN -17.26138566687496 NaN -16.96990169366075 NaN -16.84497999085465 NaN -16.60108523775705 NaN -16.37503644220317 NaN -16.20252551928047 NaN -16.0002713337849 NaN -15.80396580080389 NaN -15.661198140454077 NaN -15.48868721753138 NaN -15.345919557181562 NaN -15.24479246443377 NaN -15.05443558396735 NaN -14.94735983870498 NaN -14.822438135898892 NaN -14.786746220811441 NaN -14.614235297888738 NaN -14.54285146771383 NaN -14.45362167999519 NaN -14.41198111239316 NaN -14.22757288444132 NaN -14.09670252912065 NaN -14.090753876606069 NaN -14.16213770678098 NaN -14.23947018947047 NaN -14.269213452043347 NaN -14.15024040175183 NaN -14.18593231683929 NaN -13.97772947882913 NaN -13.87660238608135 NaN -13.85875642853762 NaN -13.72193742070238 NaN -13.56727245532341 NaN -13.32932635474037 NaN -13.22819926199259 NaN -13.21035330444886 NaN -12.81179358597228 NaN -12.669025925622458 NaN -12.603590747962132 NaN -12.48461769767062 NaN -12.306158122233342 NaN -12.21097968200013 NaN -12.092006631708612 NaN -11.96708492890252 NaN -11.88975244621304 NaN -11.848111878611011 NaN -11.81241996352355 NaN -11.61016577802798 NaN -11.509038685280192 NaN -11.48524407522189 NaN -11.19970875452225 NaN -11.03314648411413 NaN -10.87253286622058 NaN -10.676227333239579 NaN -10.69407329078331&rft_rights= http://creativecommons.org/licenses/by/3.0/au/&rft_rights=http://i.creativecommons.org/l/by/3.0/au/88x31.png&rft_rights=WWW:LINK-1.0-http--related&rft_rights=License Graphic&rft_rights=Creative Commons Attribution 3.0 Australia License&rft_rights=http://creativecommons.org/international/au/&rft_rights=WWW:LINK-1.0-http--related&rft_rights=WWW:LINK-1.0-http--related&rft_rights=License Text&rft_rights=Creative Commons Attribution 3.0 Australia License http://creativecommons.org/licenses/by/3.0/au&rft_subject=biota&rft_subject=marine&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

http://creativecommons.org/licenses/by/3.0/au/

Creative Commons Attribution 3.0 Australia License
http://creativecommons.org/licenses/by/3.0/au

http://i.creativecommons.org/l/by/3.0/au/88x31.png

WWW:LINK-1.0-http--related

License Graphic

Creative Commons Attribution 3.0 Australia License

http://creativecommons.org/international/au/

WWW:LINK-1.0-http--related

WWW:LINK-1.0-http--related

License Text

Access:

Open

Brief description

This dataset is consists of modelled habitat suitability of coastal seagrass distribution in the wet and dry seasons along the Great Barrier Reef World Heritage Area coastline. A Bayesian belief network was used to quantify the relationship (dependencies) between seagrass and eight environmental drivers: relative wave exposure, bathymetry, spatial extent of flood plumes, season, substrate, region, tidal range and sea surface temperature. We found that at the scale of the entire GBRWHA, the main drivers of inshore seagrass presence are tidal range and relative exposure. The outputs of our analysis included a probabilistic GIS-surface of inshore seagrass presence and distribution for both the wet and dry seasons, and across four regions at the scale of 2km*2km planning units. The model can be used by managers in the GBRWHA to delineate seagrass ecological units, and assist them in marine planning at broad spatial scales. For more information about methods see: Grech, A. and Coles, R.J. 2010, An ecosystem-scale predictive model of coastal seagrass distribution, Aquatic Conservation: Marine and Freshwater Ecosystems 20: 437-444 Data Location: This dataset is filed in the eAtlas enduring data repository at: data\MTSRF\QLD_MTSRF-1-1-3_JCU_Grech-A_Seagrass-coastal-model-2007

Lineage

Statement: This dataset was developed as part of a Alana Grech's PhD: "Spatial models and risk assessments to inform marine planning at ecosystem-scales: seagrasses and dugongs as a case study", James Cook University, 2009.

Notes

Purpose
Ecosystem-scale networks of marine protected areas (MPA) are an important planning tool, but the information used to delineate ecological units is difficult to quantify at broad spatial scales because of the cost associated with collecting information at that scale. The Great Barrier Reef World Heritage Area (GBRWHA) is the world’s largest World Heritage area (approximately 348,000 km2) and second largest MPA. To inform the management of inshore (<15 m) seagrass communities at the scale of the entire GBRWHA, we determined their presence and distribution at a regional and sub- regional scale by generating a GIS-based habitat model.

Issued: 11 2009

Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Other Information
(Original data in ArcInfo Binary Grid (from Tropical Data Hub). Note: This version has no projection information and an excess extent. (270 KB))

uri : http://tropicaldatahub.org/data/b660da0d-5075-472f-97eb-ba75e6914880

(GeoTiff conversion by eAtlas - fix of the GIS problems. (46 KB))

uri : https://nextcloud.eatlas.org.au/apps/sharealias/a/gbr_jcu_seagrass-coastal-model-2007-zip

(Grech, Alana (2009) Spatial models and risk assessments to inform marine planning at ecosystem-scales: seagrasses and dugongs as a case study. PhD thesis, James Cook University.)

uri : http://eprints.jcu.edu.au/8195/

(Grech, A. and Coles, R.J. 2010, An ecosystem-scale predictive model of coastal seagrass distribution, Aquatic Conservation: Marine and Freshwater Ecosystems 20: 437-444)

doi : http://dx.doi.org/10.1002/aqc.1107

(eAtlas Web Mapping Service (WMS) (AIMS))

uri : https://eatlas.org.au/data/uuid/71127e4d-9f14-4c57-9845-1dce0b541d8d

Identifiers