Full description
In this paper we implement and test the recently described nearest subspace classifier on a range of microarray cancer datasets. Its classification accuracy is tested against nearest neighbor and nearest centroid algorithms, and is shown to give a significant improvement. This classification system uses class-dependent PCA to construct a subspace for each class. Test vectors are assigned the class label of the nearest subspace, which is defined as the minimum reconstruction error across all subspaces. Furthermore, we demonstrate this distance measure is equivalent to the null-space component of the vector being analyzed. PRIB 2008 proceedings found at: http://dx.doi.org/10.1007/978-3-540-88436-1 Contributors: Monash University. Faculty of Information Technology. Gippsland School of Information Technology ; Chetty, Madhu ; Ahmad, Shandar ; Ngom, Alioune ; Teng, Shyh Wei ; Third IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB) (3rd : 2008 : Melbourne, Australia) ; Coverage: Rights: Copyright by Third IAPR International Conference on Pattern Recognition in Bioinformatics. All rights reserved.Issued: 2017-11-21
Created: 2017-11-21
Subjects
1959.1/63710 |
2008 |
Bioinformatics |
Bioinformatics -- Congresses |
Bioinformatics Software |
Computational biology -- Congresses |
Computational biology -- Methods -- Congresses |
Computer vision in medicine -- Congresses |
Pattern Recognition and Data Mining |
Pattern recognition, automated -- Methods -- Congresses |
conference paper |
monash:7862 |
User Contributed Tags
Login to tag this record with meaningful keywords to make it easier to discover
Identifiers
- DOI : 10.4225/03/5A13727393276