Characterisation of human osteoclastogenesis [ 2002 - 2004 ]

Also known as: A study of the factors and genes that cause white blood cells to become osteoclasts, the cells that resorb bone

Research Grant

[Cite as]

Researchers: Prof Geoffrey Nicholson (Principal investigator) ,  A/Pr Damian Myers

Brief description Osteoclasts (OC) are large multinucleated cells present in bone that are responsible for bone resorption. The renewal of bone and bone growth are regulated by the opposing actions of OCs and osteoblasts, cells that form new bone. Together, with other accessory cells in the bone marrow, these constitute 'bone-forming units' (BFU). Excess production or over-activation of OCs in the BFU leads to common bone conditions such as osteoporosis, Paget's disease and the bone lysis caused by bone cancers. Osteoporosis causes a great deal of pain and disability and it alone costs the Australian taxpayers more than $400 million per year. OCs are formed from white blood cells that are present in the bone marrow and the blood. The recent discovery of a family of new factors that control the formation of OCs has enabled the generation of human OCs in the laboratory so now we can investigate the genes that control the process of conversion of white blood cells to OCs. An important advance in this project involves the use of cord blood that contains stem cells. These very na ve cells will enable us to study the very earliest genes that control differentiation of precursors to OC. We have found a number of genes that are regulated by these new bone-forming factors. In white blood cells the activation of particular genes can regulate OC formation. One example is vitamin D-upregulated gene, VDUP. This gene is of particular interest as it causes inhibition of the mechanism that leads to OC formation in the bone. Obviously, the ability to control a 'switch' that regulates OC formation may enable us to control the progress of bone loss in diseases such as osteoporosis. In this project, we intend to investigate how and why the genes that lead to OC formation are regulated and what influence the various bone cell factors have on the formation of bone-resorbing OCs. These studies will lead to the development of treatments for osteoporosis and other bone diseases.

Funding Amount $AUD 339,480.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Viewed: [[ro.stat.viewed]]