Research Grant
[Cite as https://purl.org/au-research/grants/nhmrc/350487]Researchers: Prof Amanda Fosang (Principal investigator) , Heather Stanton , Prof Christopher Little
Brief description In healthy joints the proteoglycan, aggrecan, gives cartilage compressive resilience to permit weight bearing, but in disease aggrecan is degraded by ADAMTS enzymes. The challenges to the field are to determine which ADAMTS is involved, when these enzymes are active and precisely where they come from. We hypothesise that ADAMTS-4 and-or ADAMTS-5 is involved in cartilage pathology. To test this hypothesis we aim to [1] Generate mice containing mutant ADAMTS-4 and-or -5 in all cells, or [2] in cartilage cells only. [3] Analyse mutant mice for changes in skeletal architecture, changes in ADAMTS mRNA and protein, and changes in aggrecan breakdown products. [4] Assess disease severity in mutant mice in in vivo models of joint disease. We already have mice with ADAMTS-4, or -5, mutated in all tissues and we are generating the double mutants now. We will also generate single and double mutants with dysfunctional enzymes in cartilage only. We will examine skeletal structure by histology and X-ray at all ages and monitor for expression of ADAMTS-1 and -9 to detect any compensatory over-production of other potential 'aggrecanases'. We will also do co-culture experiments in which cartilage and synovial cells from combinations of mutant and control mice will be incubated together to determine whether synovial ADAMTS can penetrate and degrade aggrecan in cartilage. Finally we will induce arthritis in mutant and control mice and monitor them to detect differences in the time of disease onset, the rate of disease progression and overall disease severity. A comparison of whole-mouse with cartilage only mutants in the in vivo models will complement the in vitro co-culture studies and determine whether other joint tissues such as synovium and joint capsule can also produce ADAMTS enzymes that destroy cartilage. This is not known. Together these experiments will reveal if, where and when ADAMTS-4 and-or -5 are active, and whether indeed they are the best targets for drug development.
Funding Amount $AUD 540,600.00
Funding Scheme NHMRC Project Grants
Notes Standard Project Grant
- nhmrc : 350487
- PURL : https://purl.org/au-research/grants/nhmrc/350487