grant

Brain pathways for neurally-mediated fever: from vagal afferent to sympathetic output to brown adipose tissue via brain [ 2007 - 2009 ]

Also known as: Brain neural pathways to thermoregulatory centre from peripheral nerves in fever

Research Grant

[Cite as http://purl.org/au-research/grants/nhmrc/426716]

Researchers: Dr Youichirou Ootsuka (Principal investigator)

Brief description Fever is one of the immune defence reactions to the invasion of microorganisms such as bacteria and viruses. Fever reflects increased heat production and decreased heat loss. Systems regulating heat production and heat loss are under brain control. To trigger fever, the immune system must alert the brain to the presence of infection. The general view of how the alerting system triggers fever is that it develops in sequential steps. Macrophages ingest microorganisms, and then regulatory proteins (cytokines) are released. The cytokines enter the blood stream and are transported to the brain. Recently, the existence of another signalling pathway has been demonstrated. The pathway is via a special peripheral sensory nerve, the abdominal vagal sensory nerve. However, special neural pathways in the brain have not yet been clarified, even though several neural relay stations have been proposed. To elucidate neural pathways transmitting information of infection to the brain, both input and output of the pathway need to be specified. Specific outputs other than body temperature have not been determined, so far. I have recently developed a new reflex model, in which I focus on sympathetic nerves supplying the specialised fat tissue as an output as well as the vagus sensory nerve as an input. The fat tissue, brown adipose tissue (BAT), generates heat. When the vagus sensory nerve is stimulated electrically, BAT sympathetic nerve is activated. We were very exited when we discovered the potency of the combination in our rat model. We are now ready to elucidate brain pathways for neurally-mediated fever, using our new reflex model. Signalling to the brain via the nervous system is faster than via the blood stream, and thus must be very important for the earliest phase of fever. Understanding the neural pathways by which the brain perceives peripheral infection and triggers fever may promote beneficial aspects of the acute-phase immune reaction.

Funding Amount $AUD 405,223.37

Funding Scheme NHMRC Project Grants

Notes New Investigator Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]