grant

Biochemical basis of islet beta-cell compensation and failure in normal pregnancy and gestational diabetes mellitus [ 2007 - 2009 ]

Also known as: Regulation of insulin secretion in normal and diabetic pregnancy

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/418077]

Researchers: Prof Christopher Nolan (Principal investigator) ,  The Australian National University (Managed by)

Brief description The factors causing the current world-wide crisis of rapidly rising diabetes prevalence remain poorly understood. Of potential major importance, however, is the hypothesis that abnormalities in the maternal metabolic environment, as occur in gestational diabetes (GDM) (diabetes that develops in pregnancy), result in abnormal development of metabolic systems in the baby resulting in higher risk of adult onset diabetes in the babies. Therefore, it is of importance to understand the mechanisms causing GDM, such that effective measures can be developed to counter this passing on of diabetes risk from mother to baby. It is known that a key factor causing GDM is failure of maternal pancreatic islet beta-cells to compensate for increased demands for insulin production in pregnancy. Poorly understood, however, are the cellular mechanisms of islet beta-cell compensation in normal pregnancy and failure of this compensation in GDM pregnancy. We have recently shown that there is a pathway of fat metabolism (triglyceride- free fatty acid cycle) within the islet beta-cell that has an important role in amplyfing insulin secretion necessary to maintain normal blood glucose and protecting the islets from failure in obese rats. The major focus of this project is to test the hypothesis that this pathway has a key role in the adaptation of pancreatic islets to normal pregnancy and its dysfunction contributes to the causation of GDM. Of great interest from preliminary findings is that a master regulator of glucose and fat metabolism, PGC1alpha, is markedly reduced in islets during normal pregnancy. Studies will also be directed to PGC1alpha's role in islet adaptation to pregnancy and failure in GDM. We expect that successful completion of this project will lead to the development of highly targeted counter measures to prevent GDM and to slow and reverse the current epidemic of diabetes.

Funding Amount $AUD 480,828.39

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]