grant

Antigen selection in the MHC-restricted cellular immune response [ 2001 - 2001 ]

Also known as: Selection of peptide antigens in immune responses

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/145636]

Researchers: Prof James Mccluskey (Principal investigator) ,  Prof Anthony Purcell

Brief description The body's white cells eliminate microorganisms through the actions of immune lymphocytes and other cells which conspire to kill and neutralise these unwanted guests. When microorganisms hide inside the cells of the body they are still detected by a set of T lymphocytes which have specific receptors for scrutinising the surface of cells for any changes which might signal an intracellular infection. The immune system is ever vigilant in its search for signs of infection which are generally apparent when molecules called antigens are released by microorganisms and captured by the body's cells. This activates lymphocytes resulting in an immune response capable of eliminating the microorganisms. Scrutiny of the body's cells by lymphocytes occurs continuously even when there is no infection present in the body. Following infection of a cell, microbial antigens reveal the infection by their appearance on the cell surface where they are detected by the immune system's lymphocytes. This occurs through a mechanism called antigen presentation. During antigen presentation the proteins inside the cell, including those of any invading microorganism, are first degraded into shorter molecules called peptides. This event is called antigen processing. A fraction of the peptides created by antigen processing are captured by specialised receptors present on all cells. These receptors are called HLA or histocompatibility molecules. This project examines the molecular events which mediate the capture of peptide antigens by HLA molecules. The main focus is on those peptide antigens which elicit killer T cell responses by the immune system. A knowledge of how these peptides are selected for presentation and how they are captured and carried to the cell surface is fundamental to understanding immune responses to microorganisms, tumours, allergens, transplants and self tissues as in autoimmunity. Therefore the study is of great general relevance.

Funding Amount $AUD 175,570.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]