grant

Antigen dose and TCR repertoire in CD8+ T cell immunodominance hierarchies [ 2007 - 2009 ]

Also known as: Determinants of virus specific CD8+ T cell hierarchies.

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/454595]

Researchers: Prof Peter Doherty (Principal investigator) ,  Prof Nicole La Gruta

Brief description The CD8+, or killer , T lymphocytes (white blood cells) are the hit men of immunity, recirculating continually around the body to eliminate other cells that are dangerous because they are cancerous or infected with a virus. A major difficulty is that killer T cells also exert selective pressures that cause viruses and tumours to mutate and thus avoid immune control. This is a particularly serious problem for RNA viruses that readily mutate as they divide. These include the human immunodeficiency virus (HIV) that causes AIDS and, while the mutations that are most important with influenza viruses are those that modify viral surface proteins recognized by antibodies, such T cell escape mutants can also be a problem with influenza. The other reason why there is particular interest in promoting CD8+ T cell-mediated immunity to influenza is that the killer T cells are very cross-reactive. We have shown that vaccination approaches that prime mouse CD8+ T cells to resist influenza A viruses circulating currently in humans will also protect against the highly lethal, and dangerous H5N1 bird 'flu. The present flu vaccines only stimulate antibodies, so there is interest in the possibility of a major re-design. The CD8+ T cells recognize tiny elements (peptides) of the virus or tumour bound in the tip of our own transplantation, or class I major histocompatibility complex (MHCI) molecules. These pMHCI complexes are called epitopes. The focus here is on the use of novel genetic engineering strategies to find out how, when the virus mutates to disrupt the major epitopes seen by killer T cells, other minor epitopes can be abnormally emphasized in a way that promotes effective immune control. As we work on this with the relatively simple and safe influenza model we will concurrently develop strategies that may be of value in HIV and tumour immunity. Solving this problem could prove to be a substantial advance in the design of vaccines and immunotherapy approaches.

Funding Amount $AUD 558,920.10

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]