grant

Alternative splicing of GLI1 and its role in tumourigenesis [ 2002 - 2004 ]

Also known as: Understanding the regulation of cancer genes

Research Grant

[Cite as https://purl.org/au-research/grants/nhmrc/210312]

Researchers: A/Pr Joseph Rothnagel (Principal investigator) ,  Prof Ross Smith

Brief description Gene expression involves the transfer of information from DNA to proteins and is mediated by a third molecule called messenger RNA (mRNA). The process is tightly controlled since unregulated gene expression is harmful and can result in diseases such as developmental disorders and cancer. The genetic information in DNA is first copied to an RNA molecule in a process called transcription. This RNA molecule then undergoes a series of maturation steps before the information it carries can be translated into a protein. One of these maturation steps involves the removal of sequences (called introns) that do not contain protein coding information from the sequences (called exons) that will be present in the mature mRNA. Some genes contain no introns while others contain 20 or more, which are dispersed throughout the gene. The removal of intron sequences from immature RNA molecules is called splicing and is carried out by a macromolecular complex that recognises the intron sequences, cuts them out of the RNA and then rejoins the RNA to make a contiguous sequence. This process has to be precise otherwise spurious sequences will be present in the mRNA, which will result in the production of abnormal proteins. In addition, for some genes mRNAs are produced that have differences in a portion of their sequence. These alternative sequences are generated by the inclusion or exclusion of alternative exons. Because, RNA splicing is critical to the production of mature mRNAs and because it can generate sequence diversity it is tightly regulated. We have recently found that expression of a cancer gene (called GLI1) is regulated in part by the use of alternative GLI1 mRNAs. Moreover, we found that the expression of one of these alternative GLI1 mRNAs is associated with skin cancer. In this project we will investigate the molecular mechanisms that regulate alternative splicing in GLI1 and identify whether changes in these mechanisms result in cancer.

Funding Amount $AUD 392,640.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]