Data

A Framework for Modelling Shoreline Response to Clustered Storm Events: Case Studies from Southeast Australia

Australian Ocean Data Network
Nichol, S. ; Davies, G. ; Howard, F.J.F. ; Jiang, W. ; McPherson, A. ; Gravois, U. ; Callaghan, D. ; Baldock, T.
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=https://pid.geoscience.gov.au/dataset/ga/83198&rft.title=A Framework for Modelling Shoreline Response to Clustered Storm Events: Case Studies from Southeast Australia&rft.identifier=https://pid.geoscience.gov.au/dataset/ga/83198&rft.description=Coastal communities in Australia are particularly exposed to coincident natural hazards, whereby tropical cyclones and extra-tropical storms cause damage to infrastructure and shorelines from severe wind, flood and storm surge. Because the climatic drivers of severe storms are stronger under certain conditions (e.g. during La Ni±a periods for tropical cyclones), these events can repeatedly impact the coast over periods of weeks to months. Historically, major episodes of beach erosion along southeast Australia have occurred during every decade over the last century, with the most severe in 1974 resulting from two extra-tropical storms in two months. While the process of beach erosion is well understood in general terms, the response of a specific sector of coast to clustered storms may not be. For effective coastal management, this site specific knowledge becomes essential. Here we present a framework for integrating coastal geomorphology and coastal engineering approaches to model shoreline response to clustered storms at a spatial scale that can directly inform management agencies. We focus on two case study areas in southeast Australia, the beaches of the Adelaide metropolitan coast (South Australia) and Old Bar beach (central New South Wales) where erosion is a management priority. For each site we adopt the coastal sediment compartment as the functional management unit, mapped for the Australian continent at multiple spatial scales, and use sub-surface information (boreholes, ground penetrating radar profiles) to estimate sediment volumes in the upper beach to foredune. These data are then used to inform shoreline response modelling linked to an event time series (observed and hind cast) as a separate project component. Future work includes assessment of `at-risk infrastructure at each site. This paper is a contribution to the Bushfire and Natural Hazard Cooperative Research Centre project Storm surge: Resilience to clustered disaster events on the coast.Maintenance and Update Frequency: unknownStatement: Abstract submitted to International Coastal Symposium May 2016. Papers to be published in Journal of Coastal Research.&rft.creator=Nichol, S. &rft.creator=Davies, G. &rft.creator=Howard, F.J.F. &rft.creator=Jiang, W. &rft.creator=McPherson, A. &rft.creator=Gravois, U. &rft.creator=Callaghan, D. &rft.creator=Baldock, T. &rft.date=2015&rft_rights=&rft_rights=Creative Commons Attribution 4.0 International Licence&rft_rights=CC-BY&rft_rights=4.0&rft_rights=http://creativecommons.org/licenses/&rft_rights=WWW:LINK-1.0-http--link&rft_rights=Australian Government Security ClassificationSystem&rft_rights=https://www.protectivesecurity.gov.au/Pages/default.aspx&rft_rights=WWW:LINK-1.0-http--link&rft_rights=Creative Commons Attribution 4.0 International Licence http://creativecommons.org/licenses/by/4.0&rft_subject=geoscientificInformation&rft_subject=External Publication&rft_subject=marine&rft_subject=PHYSICAL GEOGRAPHY AND ENVIRONMENTAL GEOSCIENCE&rft_subject=EARTH SCIENCES&rft_subject=Published_External&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

Open Licence view details
CC-BY

Creative Commons Attribution 4.0 International Licence
http://creativecommons.org/licenses/by/4.0

Creative Commons Attribution 4.0 International Licence

CC-BY

4.0

http://creativecommons.org/licenses/

WWW:LINK-1.0-http--link

Australian Government Security ClassificationSystem

https://www.protectivesecurity.gov.au/Pages/default.aspx

WWW:LINK-1.0-http--link

Access:

Open

Contact Information



Brief description

Coastal communities in Australia are particularly exposed to coincident natural hazards, whereby tropical cyclones and extra-tropical storms cause damage to infrastructure and shorelines from severe wind, flood and storm surge. Because the climatic drivers of severe storms are stronger under certain conditions (e.g. during La Ni±a periods for tropical cyclones), these events can repeatedly impact the coast over periods of weeks to months. Historically, major episodes of beach erosion along southeast Australia have occurred during every decade over the last century, with the most severe in 1974 resulting from two extra-tropical storms in two months.

While the process of beach erosion is well understood in general terms, the response of a specific sector of coast to clustered storms may not be. For effective coastal management, this site specific knowledge becomes essential. Here we present a framework for integrating coastal geomorphology and coastal engineering approaches to model shoreline response to clustered storms at a spatial scale that can directly inform management agencies. We focus on two case study areas in southeast Australia, the beaches of the Adelaide metropolitan coast (South Australia) and Old Bar beach (central New South Wales) where erosion is a management priority.

For each site we adopt the coastal sediment compartment as the functional management unit, mapped for the Australian continent at multiple spatial scales, and use sub-surface information (boreholes, ground penetrating radar profiles) to estimate sediment volumes in the upper beach to foredune. These data are then used to inform shoreline response modelling linked to an event time series (observed and hind cast) as a separate project component. Future work includes assessment of `at-risk infrastructure at each site. This paper is a contribution to the Bushfire and Natural Hazard Cooperative Research Centre project Storm surge: Resilience to clustered disaster events on the coast.

Lineage

Maintenance and Update Frequency: unknown
Statement: Abstract submitted to International Coastal Symposium May 2016. Papers to be published in Journal of Coastal Research.

Issued: 2015

This dataset is part of a larger collection

Click to explore relationships graph
Subjects

User Contributed Tags    

Login to tag this record with meaningful keywords to make it easier to discover

Other Information
Link to article

doi : https://doi.org/10.2112/SI75-240.1

Identifiers