Data

The role of Antarctic marine protists in trophodynamics and global change and the impact of UV-B on these organisms - Voyage 3, BROKE-West, Aurora Australis 2005/2006 samples

Australian Antarctic Data Centre
WRIGHT, SIMON
Viewed: [[ro.stat.viewed]] Cited: [[ro.stat.cited]] Accessed: [[ro.stat.accessed]]
ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2FANDS&rft_id=info:doi10.4225/15/528C426A13819&rft.title=The role of Antarctic marine protists in trophodynamics and global change and the impact of UV-B on these organisms - Voyage 3, BROKE-West, Aurora Australis 2005/2006 samples&rft.identifier=10.4225/15/528C426A13819&rft.publisher=Australian Antarctic Data Centre&rft.description=Locations of sampling sites for ASAC project 40 on voyage 3 of the Aurora Australis in the 2005/2006 season (the BROKE-West voyage). Samples were collected between January and March of 2008. Three datasets are currently included in this download - an excel spreadsheet and a draft publication providing details on the methodology, etc employed, as well as two copies of corrected fluoro data for BROKE-West (BW_UwayFLuChla - in excel and csv formats). Public Summary from the project: This program aims to determine the role of single celled plants, animals, bacteria and viruses in Antarctic waters. We quantify their vital role as food for other organisms, their potential influence in moderating global climate change through absorption of CO2 and production of DMS, and determine their response to effect of climate change. For more information, see the other metadata records related to ASAC project 40 (ASAC_40). ###### Taken from the abstract of the draft paper: The geographic distribution, stocks and vertical profiles of phytoplankton of the seasonal ice zone off east Antarctica were determined during the 2005-2006 austral summer as part of the Baseline Research on Oceanography, Krill and the Environment-West (BROKE-West) survey. CHEMTAX analysis of HPLC pigment samples, coupled with microscopy, permitted a detailed survey along eight transects covering an extensive area between 30 degrees E and 80 degrees E, from 62 degrees S to the fast ice. Significant differences were found in the composition and stocks of populations separated by the Southern Boundary of the Antarctic Circumpolar Current (SB), as well as a small influence of the Weddell Gyre in the western sector of the zone south of the SB (SACCZ). Within the SACCZ, we identified a primary bloom under the ice, a secondary bloom near the ice edge, and an open ocean deep population. The similarity of distribution patterns across all transects allowed us to generalise a hypothesized sequence for the season. The primary bloom was initiated by release of cells and detritus from melting sea ice, some 35 days before ice melting, with stocks of Chl a ranging from 115-239 mg.m-2, apart one leg (41 mg.m-2), which was sampled late in the season. The bloom was dominated by haptophytes (in particular, colonies and gametes of Phaeocystis antarctica), diatoms and cryptophytes (or Myrionecta rubrum). The detrital material quickly sank from the upper water column, but the bloom of diatoms and, to a lesser extent cryptophytes, continued until 20 days after ice melt. Average Chl a stocks during this bloom ranged from 56-92 mg.m-2 between transects. A bloom of Phaeocystis gametes immediately after ice melt lasted for about 10 days. Grazing activity, as indicated by phaeophytin a, also increased at the same time. The diatom bloom became senescent, probably as a result of iron exhaustion, as indicated by chlorophyllides, which reached 45% of total Chl a. The bloom then rapidly declined, apparently due to grazing krill. Well-defined 'holes' in the chlorophyll distribution of most suggested that the krill were moving southward following the retreating sea ice and clearing the ice edge bloom. There was no evidence that blooms had been terminated by sinking or by vertical mixing. It appears that grazing of the bloom and export of cellular material as faecal pellets stripped the upper water column of iron, preventing its normal recycling via the microbial network. Thus, export of iron by grazing, and possibly sedimentation, created a southward migrating iron front, limiting growth in the upper water column. North of the iron front, a recycling nanoflagellate community developed at depth, sustained by residual iron, as indicated by a close correspondence between distributions of Chl a and profiles of Fv/Fm. Its depth was independent of the mixed layer and the pycnoclines. This community consisted of haptophytes (chiefly Phaeocystis gametes), dinoflagellates, prasinophytes, cryptophytes, and some small diatoms. The community may have derived from, and was possibly sustained by, selective grazing by krill. Average stocks of Chl a ranged from 36-49 mg.m-2 between transects. North of the SB, communities were found in the mixed layer, although they still had low Fv/Fm ratios. Populations were dominated by Phaeocystis gametes (with colonies north of the southern ACC front), diatoms such as Pseudonitzschia sp., Fragilariopsis pseudonana, F. kerguelensis, F. curta, and Gymnodinium sp. Average stocks of Chl a ranged from 40-67 mg.m-2 between transects.These appeared to be recycling communities that had been advected into the BROKE-West study region. These interpretations provide a cogent explanation for the composition and structure of microbial populations in the marginal ice zone during the latter half of the summer. ###### The fields in this dataset are: Peak Pigment name Retention times Visible maxima Comments Leg Zone Latitude Longitude CTD Julian Day Date Ice free days Pigment concentrations Protists&rft.creator=WRIGHT, SIMON &rft.date=2008&rft.coverage=northlimit=-59.7947; southlimit=-69.2071; westlimit=29.9297; eastLimit=80.01234; projection=WGS84&rft.coverage=northlimit=-59.7947; southlimit=-69.2071; westlimit=29.9297; eastLimit=80.01234; projection=WGS84&rft_rights=This data set conforms to the CCBY Attribution License (http://creativecommons.org/licenses/by/4.0/). Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=BROKE-West_ASAC_40_AA0506V3 when using these data.&rft_subject=biota&rft_subject=oceans&rft_subject=PROTISTS&rft_subject=EARTH SCIENCE&rft_subject=BIOLOGICAL CLASSIFICATION&rft_subject=PHYTOPLANKTON&rft_subject=BIOSPHERE&rft_subject=AQUATIC ECOSYSTEMS&rft_subject=PLANKTON&rft_subject=CHLOROPHYLL&rft_subject=OCEANS&rft_subject=OCEAN CHEMISTRY&rft_subject=PIGMENTS&rft_subject=CAROTENOIDS&rft_subject=BROKE-West&rft_subject=CHEMTAX&rft_subject=DATE&rft_subject=DEPTH&rft_subject=FLOW&rft_subject=HPLC&rft_subject=ICE&rft_subject=LATITUDE&rft_subject=LONGITUDE&rft_subject=LUGOLS&rft_subject=MARINE BIOLOGY&rft_subject=PLANKTON NET SAMPLE&rft_subject=TIME&rft_subject=TUBE LABEL&rft_subject=VOYAGE&rft_subject=WATER TEMPERATURE&rft_subject=CTD > Conductivity, Temperature, Depth&rft_subject=HPLC > High-Performance Liquid Chromatograph&rft_subject=NISKIN BOTTLES&rft_subject=FLUOROMETERS&rft_subject=R/V AA > R/V Aurora Australis&rft_subject=SHIPS&rft_subject=OCEAN > SOUTHERN OCEAN&rft_subject=GEOGRAPHIC REGION > POLAR&rft_place=Hobart&rft.type=dataset&rft.language=English Access the data

Licence & Rights:

view details

This data set conforms to the CCBY Attribution License (http://creativecommons.org/licenses/by/4.0/). Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=BROKE-West_ASAC_40_AA0506V3 when using these data.

Access:

Open view details

These data are publicly available for download from the provided URL.

Brief description

Locations of sampling sites for ASAC project 40 on voyage 3 of the Aurora Australis in the 2005/2006 season (the BROKE-West voyage). Samples were collected between January and March of 2008.

Three datasets are currently included in this download - an excel spreadsheet and a draft publication providing details on the methodology, etc employed, as well as two copies of corrected fluoro data for BROKE-West (BW_UwayFLuChla - in excel and csv formats).

Public Summary from the project:

This program aims to determine the role of single celled plants, animals, bacteria and viruses in Antarctic waters. We quantify their vital role as food for other organisms, their potential influence in moderating global climate change through absorption of CO2 and production of DMS, and determine their response to effect of climate change.

For more information, see the other metadata records related to ASAC project 40 (ASAC_40).

######

Taken from the abstract of the draft paper:

The geographic distribution, stocks and vertical profiles of phytoplankton of the seasonal ice zone off east Antarctica were determined during the 2005-2006 austral summer as part of the Baseline Research on Oceanography, Krill and the Environment-West (BROKE-West) survey. CHEMTAX analysis of HPLC pigment samples, coupled with microscopy, permitted a detailed survey along eight transects covering an extensive area between 30 degrees E and 80 degrees E, from 62 degrees S to the fast ice. Significant differences were found in the composition and stocks of populations separated by the Southern Boundary of the Antarctic Circumpolar Current (SB), as well as a small influence of the Weddell Gyre in the western sector of the zone south of the SB (SACCZ). Within the SACCZ, we identified a primary bloom under the ice, a secondary bloom near the ice edge, and an open ocean deep population. The similarity of distribution patterns across all transects allowed us to generalise a hypothesized sequence for the season. The primary bloom was initiated by release of cells and detritus from melting sea ice, some 35 days before ice melting, with stocks of Chl a ranging from 115-239 mg.m-2, apart one leg (41 mg.m-2), which was sampled late in the season. The bloom was dominated by haptophytes (in particular, colonies and gametes of Phaeocystis antarctica), diatoms and cryptophytes (or Myrionecta rubrum). The detrital material quickly sank from the upper water column, but the bloom of diatoms and, to a lesser extent cryptophytes, continued until 20 days after ice melt. Average Chl a stocks during this bloom ranged from 56-92 mg.m-2 between transects. A bloom of Phaeocystis gametes immediately after ice melt lasted for about 10 days. Grazing activity, as indicated by phaeophytin a, also increased at the same time. The diatom bloom became senescent, probably as a result of iron exhaustion, as indicated by chlorophyllides, which reached 45% of total Chl a. The bloom then rapidly declined, apparently due to grazing krill. Well-defined 'holes' in the chlorophyll distribution of most suggested that the krill were moving southward following the retreating sea ice and clearing the ice edge bloom. There was no evidence that blooms had been terminated by sinking or by vertical mixing. It appears that grazing of the bloom and export of cellular material as faecal pellets stripped the upper water column of iron, preventing its normal recycling via the microbial network. Thus, export of iron by grazing, and possibly sedimentation, created a southward migrating iron front, limiting growth in the upper water column. North of the iron front, a recycling nanoflagellate community developed at depth, sustained by residual iron, as indicated by a close correspondence between distributions of Chl a and profiles of Fv/Fm. Its depth was independent of the mixed layer and the pycnoclines. This community consisted of haptophytes (chiefly Phaeocystis gametes), dinoflagellates, prasinophytes, cryptophytes, and some small diatoms. The community may have derived from, and was possibly sustained by, selective grazing by krill. Average stocks of Chl a ranged from 36-49 mg.m-2 between transects. North of the SB, communities were found in the mixed layer, although they still had low Fv/Fm ratios. Populations were dominated by Phaeocystis gametes (with colonies north of the southern ACC front), diatoms such as Pseudonitzschia sp., Fragilariopsis pseudonana, F. kerguelensis, F. curta, and Gymnodinium sp. Average stocks of Chl a ranged from 40-67 mg.m-2 between transects.These appeared to be recycling communities that had been advected into the BROKE-West study region. These interpretations provide a cogent explanation for the composition and structure of microbial populations in the marginal ice zone during the latter half of the summer.

######

The fields in this dataset are:

Peak
Pigment name
Retention times
Visible maxima
Comments
Leg
Zone
Latitude
Longitude
CTD
Julian Day
Date
Ice free days
Pigment concentrations
Protists

Issued: 2008-07-18

Data time period: 2006-01-10 to 2006-02-27

This dataset is part of a larger collection

Click to explore relationships graph

80.01234,-59.7947 80.01234,-69.2071 29.9297,-69.2071 29.9297,-59.7947 80.01234,-59.7947

54.97102,-64.5009

text: northlimit=-59.7947; southlimit=-69.2071; westlimit=29.9297; eastLimit=80.01234; projection=WGS84

Other Information
Identifiers